Classification Feature Extraction Algorithm for GIS Partial Discharge Pulses
Bao Yongsheng1, Hao Fengjie2, Xu Jianzhong3, Zhang Yuanhang1
1.State Grid Ningxia Electric Power Company Yinchuan Branch Yinchuan 750001 China 2.State Grid Tianjin Electric Power Maintenance Company Tianjin 300232 China 3.State Grid Ningxia Electric Power Maintenance Company Ningxia Yinchuan 750001 China
Abstract:The partial discharge (PD) pulse group classification spectrum constructed based on traditional PD time-frequency information can only provide low-dimensional feature characteristics of PD pluses.When the classification algorithm requires more characteristics of PD pluses to complete the classification work,the abovementioned methods do not work well.This article presents an equivalent time-frequency entropy algorithm to extract the multidimensional characteristics which present the PD pluses waveform feather,and then constructs the PD pluses groups equivalent time-frequency entropy classification spectrum.The spectrum is further combined with the improved fuzzy C means clustering algorithm to complete the classification work of different types of PD pluses groups.The testing results based on gas insulated switches (GIS) prove the validity and rationality of this algorithm,which provides both experimental and theoretical basis for the development of PD online monitoring and identification system based on single artificial defect model.
[1] Hao L,Lewin P L,Dodd S J.Comparison of support vector machine based partial discharge identification parameters[C]//The 2006 IEEE International Symposium on Electrical Insulation,Toronto,Canada,2006:110-113. [2] Huang C L,Wang C J.A GA-based feature selection and parameters optimization for support vector machines[J].Expert Systems with Applications,2006,31(2):231-240. [3] 高彩亮,廖志伟,岳苓,等.基于小波奇异值和支持向量机的高压线路故障诊断[J].电力系统保护与控制,2010,38(6):35-39. Gao Cailiang,Liao Zhiwei,Yue Ling,et al.Fault diagnosis of HV transmission lines based on wavelet singular value and support vector machine[J].Power System Protection and Control,2010,38(6):35-39. [4] 任先文,薛雷,宋阳,等.基于分形特征的最小二乘支持向量机局部放电模式识别[J].电力系统保护与控制,2011,39(14):143-147. Ren Xianwen,Xue Lei,Song Yang,et al.The pattern recognition of partial discharge based on fractal characteristics using LS-SVM[J].Power System Protection and Control,2011,39(14):143-147. [5] 周天春,杨丽君,廖瑞金,等.基于局部放电因子向量和BP神经网络的油纸绝缘老化状况诊断[J].电工技术学报,2010,25(10):18-23. Zhou Tianchun,Yang Lijun,Liao Ruijin,et al.Diagnosis of aging condition in oil-paper insulation based on factor vectors of partial discharge and BP neural network[J].Transactions of China Electrotechnical Society,2010,25(10):18-23. [6] Hoof M,Freisleben M,Patsch R.Partial discharge source identification with navel discharge parameters using counterpropagation neural networks[J].IEEE Transactions on Dielectrics & Electrical Insulation,1997,4(1):17-32. [7] 苑津莎,尚海昆,王瑜.基于相关系数矩阵和概率神经网络的局部放电模式识别[J].电力系统保护与控制,2013,41(13):110-115. Yuan Jinsha,Shang Haikun,Wang Yu.Pattern recognition for partial discharge based on correlation coefficient matrix and probabilistic neural networks[J].Power System Protection and Control,2013,41(13):110-115. [8] Evagorou D,Kyprianou A,Lewin P L,et al.Feature extraction of partial discharge signals using the wavelet packet transform and classification with a probabilistic neural network[J].IET Science Measurement & Technology,2010,4(3):177-192. [9] 姚林朋,徐颖敏,钱勇,等.基于关联规则的XLPE 电缆局部放电模糊识别研究[J].电工技术学报,2010,25(10):18-23. Yao Linpeng,Xu Yingmin,Qian Yong,et al.Fuzzy pattern recognition of partial discharge in XLPE cable based on association rule[J].Transactions of China Electrotechnical Society,2010,25(10):18-23. [10]唐炬,谢颜斌,周倩,等.基于最优小波包变换与核主分量分析的局部放电信号特征提取[J].电工技术学报,2010,25(9):35-40. Tang Ju,Xie Yanbin,Zhou Qian,et al.Feature extraction for partial discharge signals based on the optimal wavelet packet basis transform and kernel principal component analysis[J].Transactions of China Electrotechnical Society,2010,25(9):35-40. [11]Cavallini A,Montanari G C,Contin A,et al.A new approach to the diagnosis of solid insulation systems based on PD signal inference[J].IEEE Electrical Insulation Magazine,2003,19(2):23-30. [12]Cavallini A,Montanari G C,Puletti F,et al.Advanced PD inference in on-field measurements.part I:noise rejection[J].IEEE Transactions on Dielectrics and Electrical Insulation,2003,10(2):216-224. [13]鲍永胜.局部放电脉冲波形特征提取及分类技术[J].中国电机工程学报,2013,38(28):168-175. Bao Yongsheng.Partial discharge pulse waveform feature extraction and classification techniques[J].Proceedings of the CSEE,2013,38(28):168-175. [14]王彩雄,唐志国,常文治,等.局部放电超高频监测抗干扰与多源放电信号分离方法[J].电网技术,2012,36(3):46-50. Wang Caixiong,Tang Zhiguo,Chang Wenzhi,et al.A method for anti-interference and multi-source discharge signal separation in ultra high-frequency partial discharge detection[J].Power System Technology,2012,36(3):46-50. [15]司文荣,李军浩,袁鹏,等.基于波形非线性映射的多局部放电脉冲群快速分类[J].电工技术学报,2009,24(3):216-221. Si Wenrong,Li Junhao,Yuan Peng,et al.The fast grouping technique of PD sequence based on the nonlinear mapping of pulse shapes[J].Transactions of China Electrotechnical Society,2009,24(3):216-221. [16]王彩雄,唐志国,常文治,等.一种多源局部放电信号分离方法[J].中国电机工程学报,2013,33(13):212-219. Wang Caixiong,Tang Zhiguo,Chang Wenzhi,et al.A method for multi-source partial discharge signals separation[J].Proceedings of the CSEE,2013,33(13):212-219. [17]司文荣,李军浩,袁鹏,等.气体绝缘组合电气多局部放电源的监测与识别[J].中国电机工程学报,2009,29(16):119-126. Si Wenrong,Li Junhao,Yuan Peng,et al.Detection and identification techniques for muli-PD source in GIS[J].Proceedings of the CSEE,2009,29(16):119-126. [18]Si Wenrong,Li Junhao,Yuan peng,et al.The fast grouping technique of PD sequence based on the nonlinear mapping of pulse shapes[J].Transactions of China Electrotechnical Society,2009,24(3):216-221. [19]郭建涛,王宏远,余国文.基于熵测度和SQP方法的跳频信号时频表示[J].华中科技大学学报,2009,37(2):5-8. Guo Jiantao,Wang Hongyuan,Yu Guowen.Representation of time-frequency by using frequency hopping signals through entropy measure and SQP[J].Journal of Huazhong University of Science and Technology(Nature Science Edition),2009,37(2):5-8. [20]Kundu P,Kishore N K,Sinha A K.Classification of acoustic emission based partial discharge in oil pressboard insulation system using fractal features[C]//2010 Annual Report Conference on Electrical and Dielectric Phenomena,West Lafayette,IN,2010:1-4. [21]Ding Dengwei,Gao Wensheng,Liu Weidong.Insulation defects discrimination in GIS by fisher discriminant analysis of partial discharge[J].High Voltage Engineering,2013,39(4):805-812. [22]Tang Jian,Chai Tianyou,Yu Wen,et al.KPCA based multi-spectral segments feature extraction and GA based combinatorial optimization for frequency spectrum data modeling[C]//2011 50th IEEE Conference on Decision and Control and European Control Conference,Orlando,FL,2011:5193-5198. [23]Chen Yuhong,Yan Changchun,Li Botao.The comparison of some time-frequency analysis methods[J].Progress in Geohysics,2006,21(4):1180-1185.