A New Method of Battery State of Charge Prediction in the Hybrid Electric Vehicle
Wang Qi1,3, Sun Yukun2,3, Ni Fuyin1,3, Luo Yinsheng1
1.School of Electrical and Information Engineering Jiangsu University of Technology Changzhou 213001 China 2.School of Electrical Engineering Nanjing Institute of Technology Nanjing 211167 China 3.Key Laboratory of Facility Agriculture Measurement and Control Technology and Equipment of Machinery Industry Jiangsu University Zhenjiang 212013 China
Abstract:In order to predict the battery’s state of charge (SOC) in the hybrid electric vehicles (HEV),the Bayesian extreme learning machine (BELM) is utilized.The basic principles of the extreme learning machine and the Bayesian linear regression are introduced in detail.To improve the abilities of fitting and generalization of the ELM,the Bayesian linear regression is used to optimize the weights of the output layer.The working voltage,the current,and the surface temperature of the battery are chosen to predict the real-time value of SOC under the driving cycle.At the same time,the energy feedback process is taken into account when the HEV is under regenerative braking model.Both the simulation results under ADVISOR and the experimental results indicate that the proposed prediction model has higher predicted accuracy and can achieve real-time and accurate SOC prediction.
王琪, 孙玉坤, 倪福银, 罗印升. 一种混合动力电动汽车电池荷电状态[J]. 电工技术学报, 2016, 31(9): 189-196.
Wang Qi, Sun Yukun, Ni Fuyin, Luo Yinsheng. A New Method of Battery State of Charge Prediction in the Hybrid Electric Vehicle. Transactions of China Electrotechnical Society, 2016, 31(9): 189-196.
[1] 陈健美,钱承,李玉强,等.基于LS-SVM的混合动力镍氢电池组SOC预测[J].中南大学学报(自然科学版),2013,44(1):135-139. Chen Jianmei,Qian Cheng,Li Yuqiang,et al.SOC prediction of MH/Ni battery in hybrid vehicle based on LS-SVM[J].Journal of Central South University(Science and Technology),2013,44(1):135-139. [2] 雷肖,陈清泉,刘开培,等.电动车蓄电池荷电状态估计的神经网络方法[J].电工技术学报,2007,22(8):155-160. Lei Xiao,Chen Qingquan,Liu Kaipei,et al.Battery state of change estimation based on neural-network for electric vehicles[J].Transactions of China Electrotechnical Society,2007,22(8):155-160. [3] 雷肖,陈清泉,刘开培,等.电动车电池SOC估计的径向基函数神经网络方法[J].电工技术学报,2008,23(5):81-87. Lei Xiao,Chen Qingquan,Liu Kaipei,et al.Radial-based-function neural network based SOC estimation for electric vehicles[J].Transactions of China Electrotechnical Society,2008,23(5):81-87. [4] 刘金枝,杨鹏,李练兵.一种基于能量建模的锂离子电池电量估算方法[J].电工技术学报,2015,30(13):100-107. Liu Jinzhi,Yang Peng,Li Lianbing.A method to estimate the capacity of the Lithium-ion battery based on energy medel[J].Transactions of China Electrotechnical Society,2015,30(13):100-107. [5] 于海芳,逯仁贵,朱春波,等.基于安时法的镍氢电池SOC估计误差矫正[J].电工技术学报,2012,27(6):12-18. Yu Haifang,Lu Rengui,Zhu Chunbo,et al.State of charge estimation calibration for Ni-MH battery based on ampere-hour method[J].Transactions of China Electrotechnical Society,2012,27(6):12-18. [6] Alvarez Anton J C,Garcia Nieto P J,Blanco Viejo C,et al.Support vector machines used to estimate the battery state of charge[J].IEEE Transactions on Power Electronics,2013,28(12):5919-5926. [7] 高明煜,何志伟,徐杰.基于采样点卡尔曼滤波的动力电池SOC估计[J].电工技术学报,2011,26(11):161-167. Gao Mingyu,He Zhiwei,Xu Jie.Sigma point Kalman filter based on SOC estimation for power supply battery[J].Transactions of China Electrotechnical Society,2011,26(11):161-167. [8] Lee D T,Shiah S J,Lee C M,et al.State of charge estimation for electric scooters by using learning mechanisms[J].IEEE Transactions on Vehicular Technology,2007,56(2):544-556. [9] 朱志莹,孙玉坤.群优化支持向量机的磁轴承转子位移预测模型[J].中国电机工程学报,2012,32(33):118-123. Zhu Zhiying,Sun Yukun.Predictive modeling of rotor displacement for magnetic bearing using particle swarm optimized-least squares support vector machines[J].Proceedings of the CSEE,2012,32(33):118-123. [10]Vapnik V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1999. [11]张承慧,李珂,崔纳新,等.混合动力电动汽车能量及驱动系统的关键控制问题研究进展[J].山东大学学报(工学版),2011,41(5):1-8. Zhang Chenghui,Li Ke,Cui Naxin,et al.Research progress on key control problems arising from the energy and driving system of the hybrid electric vehicle[J].Journal of Shandong University (Engineering Science),2011,41(5):1-8. [12]Huang G B,Zhu Q Y,SIEW C K.Extreme learning machine:theory and application[J].Neurocomputing,2006,70(1-3):489-501. [13]Huang G B,SIEW C K.Extreme learning machine:RBF network case[C]//Proceedings of the IEEE 8th International Conference on Control,Automation,Robotics and Vision,Kunming,2004:1029-1036. [14]刘学艺,李平,郜传厚.极限学习机的快速留一交叉验证算法[J].上海交通大学学报,2011,45(8):1140-1145. Liu Xueyi,Li Ping,Gao Chuanhou.Fast leave-one-out cross-validation algorithm for extreme learning machine[J].Journal of Shanghai Jiaotong University,2011,45(8):1140-1145. [15]Congdon P.Bayesian statistical modelling[M].New York:Wiley,2006. [16]Bishop C.Pattern recognition and machine learning[M].NewYork:Springer-Verlag,2006. [17]Chen T,Martin E.Bayesian linear regression and variable selection for spectroscopic calibration[J].Analytica Chimica Acta,2009,631(1):13-21. [18]Berger J O.Statistical decision theory and Bayesian analysis[M].New York:Springer-Verlag,1985. [19]MacKay D J C.Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks[J].Network Computation in Neural Systems,1995,6(3):469-505. [20]雷肖,陈清泉,刘开培,等.电动车蓄电池荷电状态估计的支持向量机方法[J].中国电机工程学报,2008,28(18):114-118. Lei Xiao,Chen Qingquan,Liu Kaipei,et al.Support vector machine based SOC estimation for electric vehicles[J].Proceedings of the CSEE,2008,28(18):114-118.