电工技术学报  2016, Vol. 31 Issue (9): 181-188    DOI:
高电压与绝缘技术 |
GIS局部放电脉冲分类特征提取算法
鲍永胜1, 郝峰杰2, 徐建忠3, 张远航1
1.国网宁夏电力公司银川供电公司 银川 750001
2.国网天津市电力公司检修公司 天津 300232
3.国网宁夏电力公司检修公司 银川 750001
Classification Feature Extraction Algorithm for GIS Partial Discharge Pulses
Bao Yongsheng1, Hao Fengjie2, Xu Jianzhong3, Zhang Yuanhang1
1.State Grid Ningxia Electric Power Company Yinchuan Branch Yinchuan 750001 China
2.State Grid Tianjin Electric Power Maintenance Company Tianjin 300232 China
3.State Grid Ningxia Electric Power Maintenance Company Ningxia Yinchuan 750001 China
全文: PDF (2916 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 传统的基于局部放电脉冲时频信息构建的局部放电脉冲群分类谱图,多数只能提取表征局部放电脉冲波形特征的低维特征量。当分类算法需要更多的特征量来完成对放电脉冲群的分类工作时,采用上述算法则不能有效地完成对局部放电脉冲群的分类工作。为此提出了采用等效时频熵算法来提取表征局部放电脉冲波形特征的多维特征量,构建放电脉冲群的等效时频熵分类谱图,并与改进的模糊C均值聚类算法相结合实现对不同类型局部放电脉冲群的分类工作。基于气体绝缘组合开关设备(GIS)的实验结果证实了上述方法的有效性和合理性,为研制基于单一人工缺陷模型的局部放电在线监测和识别系统提供了实验和理论依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲍永胜
郝峰杰
徐建忠
张远航
关键词 局部放电 模糊C均值聚类算法 特征提取 在线监测 等效时频熵    
Abstract:The partial discharge (PD) pulse group classification spectrum constructed based on traditional PD time-frequency information can only provide low-dimensional feature characteristics of PD pluses.When the classification algorithm requires more characteristics of PD pluses to complete the classification work,the abovementioned methods do not work well.This article presents an equivalent time-frequency entropy algorithm to extract the multidimensional characteristics which present the PD pluses waveform feather,and then constructs the PD pluses groups equivalent time-frequency entropy classification spectrum.The spectrum is further combined with the improved fuzzy C means clustering algorithm to complete the classification work of different types of PD pluses groups.The testing results based on gas insulated switches (GIS) prove the validity and rationality of this algorithm,which provides both experimental and theoretical basis for the development of PD online monitoring and identification system based on single artificial defect model.
Key wordsPartial discharge    fuzzy C means clustering algorithm    feature extraction    online detection    equivalent time-frequency entropy   
收稿日期: 2015-04-12      出版日期: 2016-07-07
PACS: TM835  
通讯作者: 鲍永胜 男,1985年生,硕士研究生,研究方向为在线监测与智能诊断。E-mail:ysb1004@sina.cn(通信作者)   
作者简介: 郝峰杰 男,1987年生,硕士研究生,研究方向在线监测与智能控制理论。E-mail:10121683@bjtu.edu.cn
引用本文:   
鲍永胜, 郝峰杰, 徐建忠, 张远航. GIS局部放电脉冲分类特征提取算法[J]. 电工技术学报, 2016, 31(9): 181-188. Bao Yongsheng, Hao Fengjie, Xu Jianzhong, Zhang Yuanhang. Classification Feature Extraction Algorithm for GIS Partial Discharge Pulses. Transactions of China Electrotechnical Society, 2016, 31(9): 181-188.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/Y2016/V31/I9/181