Simulation on Fatigue Failure of Single IGBT Chip Module of Press-Pack IGBTs
Zhang Jingwei1, Deng Erping1, 2, Zhao Zhibin1, Li Jinyuan2, Huang Yongzhang1
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electrical Power University Beijing 102206 China;
2. State Grid Global Energy Interconnection Research Institute Beijing 102209 China
Due to the advantages of double heat dissipation, short circuit failure and easy series connection, press-pack IGBTs (Insulated gate bipolar transistor) are particularly suitable for application in flexible HVDC high power field. However, after a long period of cyclic thermal stress, the fatigue failure occurs in the metal material of each component because of its pressure contact package structure, which adversely affects device reliability. In this paper, the finite element simulation model of Press-Pack IGBTs was established, the power cycling simulation was used to simulate the thermal stress condition of the working process, and the thermal-mechanical results were analyzed. The fatigue life prediction of IGBT chip was carried out using Coffin-Mason and Basquin model. The results show that the edge region of the chip surface that contacting the emitter molybdenum is the pressure and deformation concentration region, and the fatigue life of the chip is only 10 000 cycles in high stress condition. A pressure failure mode of Press-Pack IGBTs was proposed, and the failure mechanisms were preliminarily explained using the actual failure chips and simulation results.
张经纬, 邓二平, 赵志斌, 李金元, 黄永章. 压接型IGBT器件单芯片子模组疲劳失效的仿真[J]. 电工技术学报, 2018, 33(18): 4277-4285.
Zhang Jingwei, Deng Erping, Zhao Zhibin, Li Jinyuan, Huang Yongzhang. Simulation on Fatigue Failure of Single IGBT Chip Module of Press-Pack IGBTs. Transactions of China Electrotechnical Society, 2018, 33(18): 4277-4285.
[1] 葛廷利, 宁博扬, 陈金辉. 受端多端的混合直流系统输送风电的控制策略研究[J]. 电力系统保护与控制, 2016, 44(24): 191-195.
Ge Tingli, Ning Boyang, Chen Jinhui.Research on control strategy of received multiterminal DC system transporting mixed by the wind[J]. Power System Protection and Control, 2016, 44(24): 191-195.
[2] 孙晓云, 同向前, 高鑫. 柔性直流输电系统中IGBT阀的故障诊断方法[J]. 电工技术学报, 2014, 29(8): 235-241.
Sun Xiaoyun, Tong Xiangqian, Gao Xin.Research on the fault diagnosis of IGBT valve in VSC-HVDC[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 235-241, 264.
[3] Choi U M, Blaabjerg F, Lee K B.Study and handling methods of power IGBT module failures in power electronic converter systems[J]. IEEE Transactions on Power Electronics, 2014, 30(5): 2517-2533.
[4] Busca C, Teodorescu R, Blaabjerg F, et al.An overview of the reliability prediction related aspects of high power IGBTs in wind power applications[J]. Microelectronics Reliability, 2011, 51(9-11): 1903-1907.
[5] Lutz J, Schlangenotto H, Scheyermann U, et al.Semiconductor power devices, physics, characteri- stics, reliability[M]. Berlin Heidelberg: Springer-Verlag, 2011.
[6] Schlegel R, Herr E, Richter F.Reliability of non- hermetic pressure contact IGBT modules[J]. Micro- electronics Reliability, 2001, 41(9-10): 1689-1694.
[7] Wakeman F, Hemmings D, Findlay W, et al.Pressure contact IGBT, testing for reliability[C]//Power Conversion and Intelligent Motion-Europe, Nuremberg, Germany, 2000: 114-118.
[8] Ciappa M.Selected failure mechanisms of modern power modules[J]. Microelectronics Reliability, 2002, 42(4-5): 653-667.
[9] Busca C.Modeling lifetime of high power IGBTs in wind power applications-an overview[C]//IEEE International Symposium on Industrial Electronics (ISIE), Gdansk, Poland, 2011: 1408-1413.
[10] 汪凌云. 金属塑性变形力学[M]. 重庆: 重庆出版社, 1986.
[11] 郑颖人,孔亮. 岩土弹塑性力学[M]. 北京: 中国建筑工业出版社, 2010.
[12] IEC 60747-1-2006 Semiconductor devices: General[S]. 2006-02
[13] 邓二平, 赵志斌, 张朋, 等. 压接型IGBT器件内部压力分布[J]. 电工技术学报, 2017, 32(6): 201-208.
Deng Erping, Zhao Zhibin, Zhang Peng, et al.Clamping force distribution within press pack IGBTs[J]. Transaction of China Electrotechnical Society, 2017, 32(6): 201-208.
[14] ABB Switzerland Ltd.Semiconductors. StakPak IGBT Module, 5SNA 1300K450300[Z]. Data Sheet, Doc. No. 5SYA 1432-01, 2016, 10: 5-8.
[15] Majumdar G, Minato T.Recent and future IGBT evolution[C]//Proceedings of IEEE Power Conver- sion Conference, Nagoya, Japan, 2007: 355-359.
[16] JESD-22A122-2007 Power Cycling Test[S].
[17] Schafer M, Schilling O, Yue C, et al.Comparison between active and passive thermal cycling stress with respect to substrate solder reliability in IGBT modules with Cu baseplates[C]//Proceedings of Power Conversion and Intelligent Motion-Europe, Nuremberg, Germany, 2014: 674-681.
[18] Özkol E, Brem F, Liu C, et al.Enhanced power cycling performance of IGBT modules with a reinforced emitter contact[J]. Microelectronics Reliability, 2015, 55(6): 912-918.
[19] 唐勇, 汪波, 陈明, 等. 高温下的IGBT可靠性与在线评估[J]. 电工技术学报, 2014, 29(6): 17-23.
Tang Yong, Wang Bo, Chen Ming, et al.Reliability and on-line evaluation of IGBT modules under high temperature[J]. Transactions of China Electro- technical Society, 2014, 29(6): 17-23.
[20] 陈传尧. 疲劳与断裂[M]. 武汉: 华中科技大学出版社, 2002.
[21] Coffin L F J. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Ryūmachi, [Rheumatism], 1953, 22(6): 419-606.
[22] Manson S S.Behavior of materials under conditions of thermal stress[J]. Technical Report Archive & Image Library, 1953, 7(S3-4): 661-665.
[23] Manson S S.Fatigue: a complex subject-some simple approximations[J]. Experimental Mechanics, 1965, 5(4): 193-226.
[24] Morrow J D.Cyclic plastic strain energy and fatigue of metals[C]//ASTM STP 378: American Society for Testing and Materials, Philadelphia, 1964: 45-87.
[25] Hirschberg M H, Manson S S.Fatigue behavior in strain cycling in the low and intermediate-cycle range[C]//Proceedings of 10th Sagamore Army Materials Research Conference, New York, 1963: 133-176.
[26] 郑修麟. 工程材料的力学行为[M]. 西安: 西北工业大学出版社, 2004.
[27] 《机械工程材料性能数据手册》编委会. 机械工程材料性能数据手册[M]. 北京: 机械工业出版社, 1995.
[28] 王平, 崔建忠. 金属塑性成形力学[M]. 北京: 冶金工业出版社, 2006.
[29] 陈传尧. 疲劳与断裂[M]. 武汉: 华中科技大学出版社, 2002.
[30] Deng E, Zhao Z, Zhang P, et al.Optimization of the thermal contact resistance within press pack IGBTs[J]. Microelectronics Reliability, 2017, 69: 17-28.
[31] Tinschert L, Ardal A R, Poller T, et al.Possible failure modes in press-pack IGBTs[J]. Micro- electronics Reliability, 2015, 39(6): 903-911.