Abstract:The operating temperature of overhead transmission lines is the vital state variable of dynamic capacity incensement and sag and tension calculation. The conductor is always treated as an isothermal section in current standards of transmission line temperature calculation to compute the conductor surface or average temperature. In fact, there exists temperature gradient distribution and different response in the cross-section of conductor, which are influenced by such factors as skin effect, external forced convection and different twisted materials, and while ignoring them the line stress and sag calculation as well as the transmission system safety evaluation may suffer from poor performance. Therefore, in order to accurately analyze and calculate the gradient distribution and difference in response of the conductor cross-section temperature. Firstly, a thermal network model is established by focusing on radial and circumferential heat transfer paths in conductor cross-section. Then, two calculation methods of conductor radial and circumferential temperature are developed respectively by adopting nonlinear iteration and parameter identification. The method adopting nonlinear iteration can fully consider the influence of temperature variation characteristics as material properties, convective heat resistance and radiation heat in the process of heat transfer, the method adopting parameter identification can effectively overcome the problem of uncertain model parameters caused by thermal deformation of the conductor under forced convection. Finally, the validity and accuracy of the proposed thermal network model and calculation methods are verified by a test platform.
胡剑, 熊小伏, 王建. 基于热网络模型的架空输电线路径向和周向温度计算方法[J]. 电工技术学报, 2019, 34(1): 139-152.
Hu Jian, Xiong Xiaofu, Wang Jian. Radial and Circumferential Temperature Calculation Method of Overhead Transmission Lines Based on Thermal Network Model. Transactions of China Electrotechnical Society, 2019, 34(1): 139-152.
[1] Dong Xiaoyuan.Analytic method to calculate and characterize the sag and tension of overhead lines[J]. IEEE Transactions on Power Delivery, 2016, 31(5): 2064-2071. [2] Kopsidas K, Boumecid B, Cooper I P.Overhead line design considerations for conductor creep mitigation[J]. IET Generation Transmission & Distribution, 2016, 10(10): 2424-2432. [3] 梁立凯, 韩学山, 王艳玲, 等. 输电线路载荷能力在线定值[J]. 电工技术学报, 2013, 28(2): 279-284.Liang Likai, Han Xueshan, Wang Yanling, et al. Online valuation of transmission line loadability[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 279-284. [4] 朱斌, 邱丽君, 王勇, 等. 电网输电断面动态热稳定限值在线计算方法[J]. 电力系统保护与控制, 2017, 45(3): 94-99.Zhu Bin, Qiu Lijun, Wang Yong, et al. Online calculation method for dynamic thermal stability limit of transmission section[J]. Power System Protection and Control, 2017, 45(3): 94-99. [5] 刘国特, 郝艳捧, 阳林, 等. 基于改进Messinger覆冰模型导线防冰临界电流计算及其影响因素分析[J]. 电工技术学报, 2016, 31(18): 176-183.Liu Guote, Hao Yanpeng, Yang Lin, et al. Caculation and influencing factors analysis of conductor anti-icing critical current based on improved messinger icing model[J]. Transactions of China Electrotechnical Society, 2016, 31(18): 176-183. [6] 蒋兴良, 孟志高, 张志劲, 等. OPGW临界融冰电流及其影响因素[J]. 电工技术学报, 2016, 31(9): 174-180.Jiang Xingliang, Meng Zhigao, Zhang Zhijin, et al. Critical ice-melting current of ice-covered OPGW and its impacting factors[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 174-180. [7] IEEE Std 738—2012. IEEE standard for calculating the current-temperature relationship of bare overhead conductors Std 738—2012. IEEE standard for calculating the current-temperature relationship of bare overhead conductors[S]. 2012. [8] CIGRE Working Group B2.43. Guide for thermal rating calculation of overhead lines[S]. 2014. [9] Arroyo A, Castro P, Manana M, et al.CO2 footprint reduction and efficiency increase using the dynamic rate in overhead power lines connected to wind farms[J]. Applied Thermal Engineering, 2018, 130: 1156-1162. [10] 杨安琪, 龚庆武. 基于BOTDR测温技术的架空线路动态增容方法[J]. 电力系统保护与控制, 2017, 45(6): 16-21.Yang Anqi, Gong Qingwu. Dynamic capacity-increase of overhead line based on BOTDR temperature monitoring technology[J]. Power System Protection and Control, 2017, 45(6): 16-21. [11] Black C R, Chisholm W A.Key considerations for the selection of dynamic thermal line rating systems[J]. IEEE Transactions on Power Delivery, 2015, 30(5): 2154-2162. [12] Castro P, Arroyo A, Martinez R, et al.Study of different mathematical approaches in determining the dynamic rating of overhead power lines and a comparison with real time monitoring data[J]. Applied Thermal Engineering, 2017, 111: 95-102. [13] Carlini E M, Pisani C, Vaccaro A, et al.A reliable computing framework for dynamic line rating of overhead lines[J]. Electric Power Systems Research, 2016, 132: 1-8. [14] 王红宇, 李和明, 罗应立. 计及轴向周向热传导的耦合网络模型和有限元模型的比较研究[J]. 电工技术学报, 2008, 23(7): 1-8.Wang Hongyu, Li Heming, Luo Yingli. Comparison between thermal-liquid coupled network model with the axial-/circle-heat transfer and fem model[J]. Transactions of China Electrotechnical Society, 2008, 23(7): 1-8. [15] 王晓远, 高鹏. 等效热网络法和有限元法在轮毂电机温度场计算中的应用[J]. 电工技术学报, 2016, 31(16): 26-33.Wang Xiaoyuan, Gao Peng. Application of equivalent thermal network method and finite element method in temperature calculation of in-wheel motor[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 26-33. [16] Lu Haowei, Borbuev A, Jazebi S, et al.Smart load management of distribution-class toroidal transformers using a dynamic thermal model[J]. IET Generation Transmission & Distribution, 2018, 12(1): 142-149. [17] Yang Lin, Qiu Weihao, Huang Jichao, et al.Comparison of conductor-temperature calculations based on different radial-position-temperature detections for high-voltage power cable[J]. Energies, 2018, 11(1): 117-133. [18] Makhkamova I, Mahkamov K, Taylor P.CFD thermal modelling of Lynx overhead conductors in distribution networks with integrated renewable energy driven generators[J]. Applied Thermal Engineering, 2013, 58(1-2): 522-535. [19] Theodosoglou I, Chatziathanasiou V, Papagiannakis A, et al.Electro-thermal analysis and temperature fluctuations’ prediction of overhead power lines[J]. International Journal of Electrical Power & Energy Systems, 2017, 87(3): 198-210. [20] Alvarez J R, Franck C M.Radial thermal conductivity of all-aluminum alloy conductors[J]. IEEE Transactions on Power Delivery, 2015, 30(4): 1983-1990. [21] 刘刚, 阮班义, 张鸣. 架空导线动态增容的热路法暂态模型[J]. 电力系统自动化, 2012, 36(16): 58-62.Liu Gang, Ruan Banyi, Zhang Ming. A transient model for overhead transmission line dynamic rating based on thermal circuit method[J]. Automation of Electric Power Systems, 2012, 36(16): 58-62. [22] 刘刚, 阮班义, 林杰, 等. 架空导线动态增容的热路法稳态模型[J]. 高电压技术, 2013, 39(5): 1107-1113.Liu Gang, Ruan Banyi, Lin Jie, et al. Steady-state model of thermal circuit method for dynamic overhead lines rating[J]. High Voltage Engineering, 2013, 39(5): 1107-1113. [23] 应展烽, 杜志佳, 冯凯, 等. 高压架空导线径向热路模型及其参数计算方法[J]. 电工技术学报, 2016, 31(4): 13-21.Ying Zhanfeng, Du Zhijia, Feng Kai, et al. Radial thermal circuit model and parameter calculation method for high voltage overhead transmission line[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 13-21. [24] 应展烽, 冯凯, 杜志佳, 等. 高压架空导线电流与轴向温度关系计算的热路模型[J]. 中国电机工程学报, 2015, 35(11): 2887-2895.Ying Zhanfeng, Feng Kai, Du Zhijia, et al. Thermal circuit modeling of the relationship between current and axial temperature for high voltage overhead conductor[J]. Proceedings of the CSEE, 2015, 35(11): 2887-2895. [25] Farzaneh M, Farokhi S, Chisholm W.Electrical design of overhead power transmission lines[M]. New York: McGraw-Hill, 2012. [26] 冯凯, 应展烽, 张旭东, 等. 基于内点法参数辨识的架空导线径向热路模型[J]. 高电压技术, 2015, 41(7): 2321-2326.Feng Kai, Ying Zhanfeng, Zhang Xudong, et al. Radial thermal circuit model of overhead conductors based on parameter identification with interior point method[J]. High Voltage Engineering, 2015, 41(7): 2321-2326. [27] Karwa R.Heat and mass transfer[M]. Singapore: Springer Press, 2017. [28] 杜雄, 李腾飞, 夏俊, 等. 基于零输入响应的Cauer型RC网络参数辨识方法[J]. 电工技术学报, 2017, 32(1): 222-230.Du Xiong, Li Tengfei, Xia Jun, et al. Identification method for Cauer type RC network parameter based on the zero-input response[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 222-230. [29] 肖曦, 许青松, 王雅婷, 等. 基于遗传算法的内埋式永磁同步电机参数辨识方法[J]. 电工技术学报, 2014, 29(3): 21-26.Xiao Xi, Xu Qingsong, Wang Yating, et al. Parameter identification of interior permanent magnet synchronous motors based on genetic algorithm[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 21-26.