Abstract:The capillary based pulsed plasma thruster is an advanced electric propulsion system. The material of the inner cavity is ablated by the arc, and the plasma generated by the ablation accelerates the injection to generate thrust under pressure gradient. The capillary based pulsed plasma thruster has the characteristics of simple structure, high reliability and wide range of adjustable output parameters. Compared with the traditional pulsed plasma thruster, the thrust ratio and overall efficiency are greatly improved under the low-level circumstance. As a result, it has great prospect in the micro satellites application. The research on capillary-based thrusters includes the design of thrusters, the development of key components and power supply, working mechanism, the diagnosis of working characteristics, and the optimization of performance parameters. This paper reviews the results of research institutions in Japan, the USA, Germany, etc., and also concludes the research status of plasma thruster.
王亚楠, 丁卫东, 程乐, 李悦, 孙安邦. 毛细管型脉冲等离子体推力器研究现状综述[J]. 电工技术学报, 2018, 33(22): 5358-5370.
Wang Yanan, Ding Weidong, Cheng Le, Li Yue, Sun Anbang. A Review of the Current Research Situation on Capillary Based Pulsed Plasma Thruster. Transactions of China Electrotechnical Society, 2018, 33(22): 5358-5370.
[1] 戴栋, 宁文军, 邵涛, 等. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao, et al.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [2] 易维明, 柏雪源, 何芳, 等. 利用热等离子体进行生物质液化技术的研究[J]. 山东理工大学学报(自然科学版), 2000(1): 9-12. Yi Weiming, Bai Xueyuan, He Fang, et al.Biomass liqucfaction in a high-temperature plasma jet flow[J]. Journal of Shandong University of Technology (Natural Science Edition), 2000(1): 9-12. [3] 唐恩凌, 张静, 刘明石. 低温等离子体技术在材料表面改性中的应用[J]. 电工材料, 2008(3): 38-41. Tang Enling, Zhang Jing, Liu Mingshi.Application of low_temperature plasma technology in surface modification of material[J]. Electrical Engineering Materials, 2008(3): 38-41. [4] 董冰岩, 甘青青, 孙宇, 等. 高压脉冲放电协同复合型催剂去除甲醛的实验[J]. 电工技术学报, 2017, 32(8): 108-113. Dong Bingyan, Gan Qingqing, Sun Yu, et al.Degradation of formaldehyde by high voltage pulse discharge combined with compound catalyst[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 108-113. [5] 李星国, 廖复辉. 直流电弧等离子体法合成金属和陶瓷纳米颗粒[J]. 过程工程学报, 2002, 2(4): 295-300. Li Xingguo, Liao Fuhui.Synthesis of metallic and ceramic nanoparticles by direct-current arc plasma[J]. The Chinese Journal of Process Engineering, 2002, 2(4): 295-300. [6] 高远, 张帅, 刘峰, 等. 脉冲介质阻挡放电等离子体催化CH4直接转化[J]. 电工技术学报, 2017, 32(2): 61-69. Gao Yuan, Zhang Shuai, Liu Feng, et al.Plasma enhanced CH4 direct conversion in pulsed dielectric barrier discharges[J]. Transactions of China Electro- technical Society, 2017, 32(2): 61-69. [7] 刘熊, 林海丹, 梁义明, 等. 空气中微秒脉冲沿面放电对环氧树脂表面特性影响研究[J]. 电工技术学报, 2015, 30(13): 158-165. Liu Xiong, Lin Haidan, Liang Yiming, et al.Effect of atmospheric-pressure microsecond pulsed discharges on epoxy resin surface[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 158-165. [8] 张天平, 张雪儿. 空间电推进技术及应用新进展[J]. 真空与低温, 2013(4): 187-194. Zhang Tianping, Zhang Xueer.Electric propulsion progress in technology and application[J]. Vacuum and Cryogenics, 2013(4): 187-194. [9] 张天平, 周昊澄, 孙小菁, 等. 小卫星领域应用电推进技术的评述[J]. 真空与低温, 2014(4): 187-192. Zhang Tianping, Zhou Haocheng, Sun Xiaoqing, et al.Review of electric propulsion applicable to small satellites[J]. Vacuum and Cryogenics, 2014(4): 187-192. [10] Jay L Smith.适用于微小航天器的姿态确定和控制[J]. 空间控制技术与应用, 2001(3): 27-31. Jay L Smith.The attitude determination and control for microspacecraft[J]. Aerospace Control and Application, 2001(3): 27-31. [11] 吴汉基, 蒋远大, 张志远, 等. 微小卫星的在轨推进技术[J]. 火箭推进, 2006, 32(3): 40-43. Wu Hanji, Jiang Yuanda, Zhang Zhiyuan, et al.On-board propulsion technologies for micro/ minisatellites[J]. Journal of Rocket Propulsion, 2006, 32(3): 40-43. [12] Juergen Mueller.Thruster options for micro- spacecraft: a review and evaluation of existing hardware and emerging technologies[C]//33rd Joint Propulsion Conference and Exhibit, Seattle, WA, USA, 1997, DOI: 10.2514/6.1997-3058. [13] Wright W P, Ferrer P.Electric micropropulsion systems[J]. Progress in Aerospace Sciences, 2015, 74: 48-61. [14] Coletti M, Ciaralli S, Gabriel S B.PPT development for nanosatellite applications: experimental results[J]. IEEE Transactions on Plasma Science, 2015, 43(1): 218-225. [15] 郑亚利, 俞集辉, 汪泉弟, 等. 面向点火系统电磁兼容预测的火花塞动态电路模型[J]. 电工技术学报, 2011, 26(2): 8-13. Zheng Yali, Yu Jihui, Wang Quandi, et al.Dynamic circuit model of the spark plug for emc prediction of ignition system[J]. Transactions of China Electro- technical Society, 2011, 26(2): 8-13. [16] 牛禄, 王宏伟, 杨威. 用于微小卫星推进装置的脉冲等离子体推力器[J]. 上海航天, 2004, 21(5): 39-43. Niu Lu, Wang Hongwei, Yang Wei.The pulsed plasma thruster for propeller in small and micro satellite[J]. Aerospace Shanghai, 2004, 21(5): 39-43. [17] Mazouffre S.Electric propulsion for satellites and spacecraft: established technologies and novel appro- aches[J]. Plasma Sources Science & Technology, 2016, 25(3): 033002. [18] Burton R L, Turchi P J.Pulsed plasma thruster[J]. Journal of Propulsion and Power, 1998, 14(5): 716-735. [19] Benson S W, Arrington L A, Hoskins W A.Development of a PPT for the EO-1 spacecraft[R]. AIAA Paper 99-2276, 1999. [20] Rayburn C, Campbell M, Hoskins W, et al.Development of a micro pulsed plasma thruster for the dawgstar nanosatellite[R]. AIAA 2000-3256, 2000. [21] Spanjers G G, Bromaghim D R, Lake C J. AFRL micro PPT development for small spacecraft propulsion[R]. AIAA Paper2002-3974, 2002. [22] Wagner H P, Anweter-Kurt M.Pulsed plasma thruster based moon orbiter propulsion system[R]. AIAA 2004-3465, 2004. [23] Antonsen E L, Burton R L, Reed G A, et al.Effects of postpulse surface temperature on micropulsed plasma thruster operation[J]. Journal of Propulsion and Power, 2005, 21(5): 877-883. [24] Schönherr T, Komurasaki K, Herdrich G.Propellant utilization efficiency in a pulsed plasma thruster[J]. Journal of Propulsion & Power, 2013, 29(6): 1478-1487. [25] Spanjers G G, Lotspeich J S, Mcfall K A, et al.Propellant losses because of particulate emission in a pulsed plasma thruster[J]. Journal of Propulsion & Power, 2015(4): 554-559. [26] Rysanek F, Burton R.Performance and heat loss of a coaxial Teflon pulsed plasma thruster[C]//Proceedings of the 27th International Electric Propulsion Con- ference, IEPC-01-151, Pasadena (USA), Oct, 2001. [27] Ishii Y, Yamamoto T, Yamada M, et al.Development of electrothermal pulsed plasma thrusters for osaka- institute-of-technology electric-rocket-engine onboard small space ship[C]//AIP Conference Proceedings. American Institute of Physics, 2008, 1084(1): 918-922. [28] Aoyagi J, Mukai M, Kamishima Y, et al.Total impulse improvement of coaxial pulsed plasma thruster for small satellite[J]. Vacuum, 2008, 83(1): 72-76. [29] Bushman S S, Burton R L.Heating and plasma properties in a coaxial gasdynamic pulsed plasma thruster[J]. Journal of Propulsion & Power, 2001, 17(5): 959-966. [30] Uezu J, Iio J, Kamishima Y, et al.Study on pulsed plasma thruster configuration to expand impulse bit range[C]//Proceedings of the 29th International Conference of Electric Propulsion, IEPC-2005-234, Princeton, USA, 2005. [31] Fujita R, Tahara H.Development of electrothermal pulsed plasma thruster systems onboard osaka institute of technology PROITERES nano- satellites[C]//Proceedings of the 33rd International Electric Propulsion Conference, IEPC-2013-97, Washington DC, USA, 2013. [32] Tahara H, Naka M, Takagi H, et al.Research and development of electrothermal pulsed plasma thrusters onboard PROITERES satellite[C]//AIP Conference Proceedings, 2010, DOI: 10.1063/1.3508567. [33] Kanaoka K, Fujita R, Ono K, et al.Research and development of a high-power electrothermal pulsed plasma thruster system onboard osaka institute of technology 2nd PROITERES nano-satellite[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, 2016, DOI: 10.2514/6.2016-4844. [34] Kohei O.Development of commercially-available electrothermal pulsed plasmathruster systems for micro/nano-satellites at osaka institute of techno- logy[C]//Proceedings of the 35th International Electric Propulsion Conference, IEPC-2017-92, Atlanta, USA, 2017. [35] Edamitsu T, Tahara H.Study on performance enhancement of an electrothermal pulsed plasma thruster[J]. Journal of High Temperature Society, 2007, 31(5): 291-298. [36] Aoyagi J, Mukai M, Kamishima Y, et al.Total impulse improvement of coaxial pulsed plasma thruster for small satellite[J]. Vacuum, 2008, 83(1): 72-76. [37] Pancotti A, Young M, Gilpin M.The Effect of ignition techniques on a capillary discharge based pulsed plasma thruster[C]//The 45th AIAA/SME/ SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, USA, 2009, DOI: 10.2514/6.2009-5280. [38] Montag C, Burghaus H, Herdrich G, et al. Development of a new pulsed plasma thruster and a brief introduction of a planned test facility[C]//The 67th International Astronautical Congress, Guada- lajara, Mexico, 2016: IAC-16-C4.4.13.x35105. [39] Schönherr T, Nees F, Arakawa Y, et al. Characteri- stics of plasma properties in an ablative pulsed plasma thruster[J]. Physics of Plasmas, 2013, 20(3): 10.1063/1.4794198. [40] Schönherr T, Nawaz A, Lau M, et al.Review of pulsed plasma thruster development at IRS[J]. Transactions of the Japan Society for Aeronautical & Spaceences Space Technology Japan, 2010, 27(8): 11-16. [41] Markusic T E, Polzin K A, Choueiri E Y, et al.Ablative Z-pinch pulsed plasma thruster[J]. Journal of Propulsion and Power, 2005, 21(3): 392-400. [42] Miyasaka T, Asato K, Sakaguchi N, et al.Optical measurements of unsteady phenomena on coaxial pulsed plasma thrusters[J]. Vacuum, 2013, 88(1): 52-57. [43] Kumagai N, Igarashi M, Sato K, et al.Plume diagnostics in pulsed plasma thruster[R]. AIAA 2002-4124, 2002. [44] Koizumi H, Noji R, Komurasa K, et al.Study on plasma acceleration in an ablative pulsed plasma thruster[R]. AIAA 2007-5226, 2007. [45] Keidar M, Boyd I D, Beilis I I.Electrical discharge in the Teflon cavity of a coaxial pulsed plasma thruster[J]. IEEE Transactions on Plasma Science, 2002, 28(2): 376-385. [46] Keidar M, Boyd I D, Beilis I I.Model of an electrothermal pulsed plasma thruster[J]. Journal of Propulsion and Power, 2003, 19(3): 424-430. [47] Keidar M, Boyd I D, Williams A, et al.Ablation study in a capillary sustained discharge[J]. IEEE Transactions on Magnetics, 2007, 43(1): 308-312. [48] Li Rui, Li Xingwen, Jia Shenli, et al.Study of different models of the wall ablation process in capillary discharge[J]. IEEE Transactions on Plasma Science, 2010, 38(4): 1033-1041. [49] Li Rui, Li Xingwen, Jia Shenli, et al. A two- dimensional capillary discharge model considering the ablation and deposition processes[J]. Journal of Applied Physics, 2011, 110(9): 093302-093302-6. [50] Pekker L.Zero-dimensional time-dependent model of high-pressure ablative capillary discharge for plasma thrusters[J]. Journal of Propulsion and Power, 2009, 25(4): 958-969. [51] 张若兵, 韩倩婷, 李爽, 等. 螺旋针-环结构等离子体射流放电过程分析[J]. 电工技术学报, 2017, 32(20): 90-96. Zhang Ruobing, Han Qianting, Li Shuang, et al.Discharge process analysis of plasma jet with spiral needle-ring electrode[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 90-96. [52] 任富强, 汲胜昌, 祝令瑜, 等. 基于同轴直管和倒置锥形管的氩大气压等离子体射流放电形态的实验和仿真[J]. 电工技术学报, 2017, 32(8): 95-102. Ren Fuqiang, Ji Shengchang, Zhu Lingyu, et al.Experiment and simulation on the discharge modality of atmospheric pressure plasma jets in argon based on coaxial straight tube and inverted tapered tube[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 95-102. [53] 周亦骁, 方志, 邵涛. Ar/O2和Ar/H2O中大气压等离子体射流放电特性的比较[J]. 电工技术学报, 2014, 29(11): 229-238. Zhou Yixiao, Fang Zhi, Shao Tao.Comparison of discharge characteristics of atmospheric pressure plasma jet in Ar/O2 and Ar/H2O mixtures[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 229-238. [54] 阮陈, 张波, 朱颖, 等. He二维射流阵列放电模式转换条件实验[J]. 电工技术学报, 2017, 32(20): 82-89. Ruan Chen, Zhang Bo, Zhu Ying, et al.Experimental investigation on transition conditions of discharge modes in atmospheric pressure two-dimensional jet array in He[J]. Transactions of China Electro- technical Society, 2017, 32(20): 82-89. [55] 吴淑群, 董熙, 裴学凯, 等. 基于激光诱导荧光法诊断大气压低温等离子体射流中OH自由基和O原子的时空分布[J]. 电工技术学报, 2017, 32(8): 82-94. Wu Shuqun, Dong Xi, Pei Xuekai, et al.Laser induced fluorescence diagnostics of the temporal and spatial distribution of OH radicals and O atom in a low temperature plasma jet at atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 82-94. [56] 荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282. Rong Mingzhe, Liu Dingxin, Li Mei, et al.Research status and new progress on the numerical simulation of non-equilibrium plasmas[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282. [57] 荣命哲, 仲林林, 王小华, 等. 平衡态与非平衡态电弧等离子体微观特性计算研究综述[J]. 电工技术学报, 2016, 31(19): 54-65. Rong Mingzhe, Zhong Linlin, Wang Xiaohua, et al.Review of microscopic property calculation of equilibrium and non-equilibrium arc plasma[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 54-65. [58] 曾晗, 林福昌, 蔡礼, 等. 石墨电极烧蚀机理及实验[J]. 电工技术学报, 2013, 28(1): 43-49. Zeng Han, Lin Fuchang, Cai Li, et al.Mechanism and experiment of graphite electrode erosion[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 43-49. [59] 潘成, 申巍, 吴锴, 等. 真空下环氧复合材料耐脉冲电流烧蚀性能[J]. 电工技术学报, 2011, 26(11): 115-120. Pan Cheng, Shen Wei, Wu Kai, et al.Ablation resistance of epoxy resin based composite under pulse current in the vacuum[J]. Transactions of China Electrotechnical Society, 2011, 26(11): 115-120. [60] 马山刚, 于歆杰, 李臻. 用于电磁发射的电感储能型脉冲电源的研究现状综述[J]. 电工技术学报, 2015, 30(24): 222-228. Ma Shangang, Yu Xinjie, Li Zhen.A review of the current research situation of inductive pulsed-power supplies for electromagnetic launch[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 222-228.