Study on Spatial Distribution of Inductive Coupled Plasma Closed Plasma with Discharge Parameter Variation
Lin Mao1,2, Xu Haojun1, Wei Xiaolong1, Han Xinmin1, Wu Songyao1
1. Science and Technology on Plasma Dynamics Laboratory Air Force Engineering University Xi’an 710038 China; 2. Troop No.93802 of PLA Xi’an 712200 China
Abstract:In the application of inductive coupled plasma(ICP), such as the coil configuration, power supply parameters, pressure and other external conditions are different, it is difficult to get the mechanism of multiple influences on the ICP parameter distribution, This paper combine the simulation and experiment methods, by the establishment of the inductive coil electromagnetic finite element model, analyzing the radio frequency electromagnetic field under different coil configuration in the spatial distribution within the plasma, then we study the influence of discharge parameters (coil configuration, power rate) on the plasma distribution and E-H model dynamic process. By analyzing its discharge parameters to provides a theoretical basis for the miniaturization engineering application of plasma source.The results of experiment and simulation show that: ①Under different coil turns and different power rates, the variation of electromagnetic field intensity has a great influence on the plasma power absorption and power coupling. ②When pressure the working gas Ar is between 0-20Pa, the electron density of ICP is axismetrically distributed, with the increase of the discharge power and gas pressure, the absorbed power and ionization degree of the plasma also increased. The distribution of electron density in the axial and radial directions increases gradually and then decreases rapidly near the wall of the chamber.
林茂, 徐浩军, 魏小龙, 韩欣珉, 武颂尧. 放电参数变化对电感耦合等离子闭式等离子体空间分布特性研究[J]. 电工技术学报, 2022, 37(5): 1294-1304.
Lin Mao, Xu Haojun, Wei Xiaolong, Han Xinmin, Wu Songyao. Study on Spatial Distribution of Inductive Coupled Plasma Closed Plasma with Discharge Parameter Variation. Transactions of China Electrotechnical Society, 2022, 37(5): 1294-1304.
[1] Xu Shuyan, Ostrikov K N, Li Y, et al.Low-frequency, high-density, inductively coupled plasma sources: operation and applications[J]. Physics of Plasmas, 2001, 8(5): 2549-2557. [2] Hopwood J, Guarnieri C R, Whitehair S J, et al.Langmuir probe measurements of a radio frequency induction plasma[J]. Journal of Vacuum Science & Technology A, 1993, 11:152-156. [3] Godyak V A, Alexandrovich B M.Plasma and electrical characteristics of inductive discharge in a magnetic field[J]. Physics of Plasmas, 2004, 11(7): 3553-3560. [4] Amorim J, Maciel H S, Sudano J P.High-density plasma mode of an inductively coupled radio frequency discharge[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1991, 9(2): 362-365. [5] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20):1-9. [6] Lee H C, Chung C W.E-H heating mode transition in inductive discharges with different antenna sizes[J]. Physics of Plasmas, 2015, 22: 053505. [7] Lee H C, Chung C W.Effect of antenna size on electron kinetics in inductively coupled plasmas[J]. Physics of Plasmas, 2013, 20: 101607. [8] Jun H S, Chang H Y.Development of 40 MHz inductively coupled plasma source and frequency effects on plasma parameters[J]. Applied Physics Letters, 2008, 92: 041501. [9] Ventzek P L G, Hoekstra R J, Kushner M J. Two-dimensional modeling of high plasma density inductively coupled sources for materials Proeessing[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1994, 12(1): 461-477. [10] Fukasawa T, Nouda T, Nakamura A, et al.RF self-bias characteristics in inductively coupled plasma[J]. Japanese Journal of Applied Physics, 1993, 32: 6076-6079. [11] 张昀, 王波, 王荷军. 射频感应耦合等离子体郎缪双探针诊断分析[J]. 真空, 2016, 53(3): 56-61. Zhang Yun, Wang Bo, Wang Hejun.Langmuir double probe diagnostic analysis of RF inductively coupled plasma[J]. Vacuum, 2016, 53(3): 56-61. [12] 汪建. 射频电感耦合等离子体及模式转变的实验研究[D]. 合肥: 中国科学技术大学,2014. [13] 朱寒, 何湘, 陈秉岩, 等. 容性耦合射频放电等离子体的仿真模拟与实验诊断研究[J]. 电工技术学报, 2019, 34(16): 3504-3511. Zhu Han, He Xiang, Chen Bingyan, et al.Simulations and experimental diagnostic of capacitively coupled RF discharge plasma[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3504-3511. [14] 张改玲, 滑跃, 郝泽宇, 等. 13.56MHz/2MHz柱状感性耦合等离子体参数的对比研究[J]. 物理学报, 2019, 68(10): 105202. Zhang Gailing, Hua Yue, Hao Zeyu, et al.Experimental investigation of plasma parameters in 13.56MHz/2MHz cylindrical inductively coupled plasma[J]. Acta Physica Sinica, 2019, 68(10): 105202. [15] 李亦非, 付宸聪, 蔡国飙, 等. 微型射频离子推进器放电等离子体全局模型仿真研究[J]. 电工技术学报, 2021, 36(15): 3113-3123. Li Yifei, Fu Chencong, Cai Guobiao, et al.Global model co-simulation of RF ion thruster based on multi-physical field coupling[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3113-3123. [16] 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013. [17] 何湘. 飞机局部等离子体隐身探索研究[D]. 南京: 南京理工大学, 2010. [18] Wen Deqi, Liu Wei, Gao Fei, et al.A hybrid m Model of radio frequency biase d inductively coupled plasma discharges: description of model and experimental validation in argon[J]. Plasma Sources Science and Technology, 2016, 25(4): 045009. [19] 苏晨, 徐浩军, 林敏. 封闭式等离子体发生器设计及其放电等离子体参数分布实验研究[J]. 高电压技术, 2013, 39(7): 1668-1673. Su Chen, Xu Hao Jun, Lin Min.Design on closed plasma generator and experimental study on its plasma parameters distribution[J]. High Voltage Engingeering, 2013, 39(7): 1668-1673. [20] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4): 1339-1358, 1425. Mei Danhua, Fang Zhi, Shao Tao.Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358, 1425. [21] 万静, 宁文军, 张雨晖, 等. 气隙宽度对大气压氦气介质阻挡放电多脉冲特性影响的仿真研究[J]. 电工技术学报, 2019, 34(4): 871-879. Wan Jing, Ning Wenjun, Zhang Yuhui, et al.Influence of gap width on the multipeak characteristics of atmospheric pressure helium dielectric barrier discharges-a numerical approach[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 871-879. [22] 田微, 盖斐, 张俊敏, 等. 径向放电的等离子体阴极脉冲电子束实验研究[J]. 电工技术学报, 2019, 34(6): 1338-1344. Tian Wei, Gai Fei, Zhang Junmin, et al.Experiment research on pulse electron beam of plasma cathode with radial discharge[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1338-1344. [23] 林茂, 徐浩军, 魏小龙, 等. 放电功率变化对电磁波在电感耦合闭式等离子体中的衰减特性[J]. 强激光与粒子束, 2021, 33(6): 065012(1-8). Lin Mao, Xu Haojun, Wei Xiaolong, et al. Research on attenuation characteristics of electromagnetic wave in ICP plasma based on variation of discharge power[J]. High Power Laser and Particle Beams, 2021, 33(6): 065012(1-8).