Abstract:Because of higher switching speed of SiC MOSFET, crosstalk in a phase-leg configuration will be more serious. It will hinder the increase of switching frequency and reduce the reliability of power electronic equipment. This paper analyzes the crosstalk mechanisms of non-Kelvin package and Kelvin package, respectively. During the turn-on transition and turn-off transition of a switch, the displacement current of the gate-drain capacitor and the drop voltages on the common source inductors can induce the gate-source voltage variation of the off-state switch. Then, this paper proposes a new gate driver for suppressing crosstalk, which creates the low turn-off gate impedance. The operating principle and the parameters design are also analyzed. Finally, the crosstalk problems in non-Kelvin package and Kelvin package are tested by experiments. The experimental results of the proposed driver prove the effect of crosstalk suppression.
梁美, 李艳, 郑琼林, 赵红雁. 桥式电路中不同封装SiC MOSFET串扰问题分析及低栅极关断阻抗的驱动电路[J]. 电工技术学报, 2017, 32(18): 162-174.
Liang Mei, Li Yan, Zheng Trillion Q, Zhao Hongyan. Analysis for Crosstalk of SiC MOSFET with Different Packages in a Phase-Leg Configuration and a Low Gate Turn-Off Impedance Driver. Transactions of China Electrotechnical Society, 2017, 32(18): 162-174.
[1] Millan J, Godignon P, Perpina X, et al. A survey of wide bandgap power semiconductor devices[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2155-2163. [2] 祁锋, 徐隆亚, 王江波, 等. 一种为碳化硅MOSFET设计的高温驱动电路[J]. 电工技术学报, 2015, 30(23): 24-31. Qi Feng, Xu Longya, Wang Jiangbo, et al. A high temperature gate drive circuit for SiC MOSFET[J]. Transactions of China Electrotechnical Society, 2015, 30(23): 24-31. [3] 陈思哲, 盛况. 4700V碳化硅PiN整流二极管[J]. 电工技术学报, 2015, 30(22): 57-61. Chen Sizhe, Sheng Kuang. 4700V SiC PiN rectifier[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 57-61. [4] 梁美, 郑琼林, 可翀, 等. SiC MOSFET, Si CoolMOS和IGBT的特性对比及其在DAB变换器中的应用[J]. 电工技术学报, 2015, 30(12): 41-50. Liang Mei, Trillion Q Zheng, Ke Chong, et al. Performance comparison of SiC MOSFET, Si CoolMOS and IGBT for DAB converter[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(12): 41-50. [5] Koiwa K, Itoh J I. A maximum power density design method for nine-switch matrix converter using SiC- MOSFET[J]. IEEE Transactions on Power Elec- tronics, 2015, 31(2): 1189-1202. [6] Hazra S, De A, Cheng L, et al. High switching performance of 1700V, 50A SiC power MOSFET over Si IGBT/BiMOSFET for advanced power conversion applications[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 4742-4754. [7] Zhang Z, Zhang W, Wang F, et al. Analysis of the switching speed limitation of wide band-gap devices in a phase-leg configuration[C]//Energy Conversion Congress and Exposition (ECCE), Raleigh, 2012: 3950-3955. [8] Jahdi S, Alatise O, Ortiz Gonzalez J A, et al. Temperature and switching rate dependence of crosstalk in Si-IGBT and SiC power modules[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 849-863. [9] Zhao Q, Stojcic G. Characterization of C d v /d t induced power loss in synchronous Buck DC-DC converters[J]. IEEE Transactions on Power Elec- tronics, 2007, 22(4): 1508-1513. [10] Nishigaki A, Umegami H, Hattori F, et al. An analysis of false turn-on mechanism on power devices[C]//Energy Conversion Congress and Expo- sition, Pittsburgh, 2014: 2988-2993. [11] Wang J, Chung S H. Impact of parasitic elements on the spurious triggering pulse in synchronous Buck converter[J]. IEEE Transactions on Power Elec- tronics, 2014, 29(12): 6672-6685. [12] Pala V, Barkley A, Hull B, et al. 900V silicon carbide MOSFETs for breakthrough power supply design[C]// Energy Conversion Congress and Exposition, Montreal, 2015: 4145-4150. [13] Wang B, Chen R, Jauregui D. Common source inductance (CSI) of power devices and the impacts on synchronous Buck converters[C]//IEEE Applied Power Electronics Conference and Exposition, Fort Worth, 2014: 157-162. [14] Wang J, Chung S H. A novel RCD level shifter for elimination of spurious turn-on in the bridge-leg configuration[J]. IEEE Transactions on Power Elec- tronics, 2015, 30(2): 976-984. [15] Zhang Z, Wang F, Tolbert L M, et al. Active gate driver for fast switching and cross-talk suppression of SiC devices in a phase-leg configuration[C]//IEEE Applied Power Electronics Conference and Expo- sition, Charlotte, 2015: 774-781. [16] Yamamoto M. Full SiC soft switching inverter— stability performance for false turn on phenomenon[C]// Power Electronics and Drive Systems, Kitakyushu, 2013: 159-164. [17] Zhou Q, Gao F, Jiang T. A gate driver of SiC MOSFET with passive triggered auxiliary transistor in a phase-leg configuration[C]//IEEE Energy Conversion Congress and Exposition, Montreal, 2015: 7023-7030. [18] Zhou Q, Gao F. A gate driver of SiC MOSFET for suppressing the negative voltage spikes in a bridge circuit[C]//IEEE Applied Power Electronics Con- ference and Exposition, Long Beach, 2016: 536-543. [19] Zhang Z, Wang F, Tolbert L M, et al. Active gate driver for crosstalk suppression of SiC devices in a phase-leg configuration[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 1986-1997. [20] Palmour J W. Silicon carbide power device deve- lopment for industrial markets[C]//IEEE International Electron Devices Meeting, San Francisco, 2014, doi:10.1109/IEDM.2014.14933683.