Abstract:Traditional Barker code pulse compression technology is constrained by rated parameters of pulse power amplifiers (duty cycle, maximum pulse width), resulting in reduced pulse compression effectiveness and detection speed. Amulti-element Lamb wave Electromagnetic Acoustic Transducer (EMAT) based on Barker code pulse compression technology is proposed. In this multi-element EMAT, the combination of a permanent magnet and a meander line coil is considered an independent element, and the direction of the Lorentz force is controlled by the magnetic field direction of the permanent magnet and the current direction of the meander line coil in each group of array elements. In this way, the excited Lamb wave phase {0, 180°} is consistent with the Barker code sequence {1, -1}, ultimately generating Lamb waves in Barker code form. A finite element model for the multi-element Lamb wave EMAT detection process is established based on Barker code pulse compression technology with tone-burst excitation. The influence of factors (permanent magnet configuration, array element sequence length, excitation signal cycle count, and meander line coil turns) on peak-side lobe ratio and main lobe width after pulse compression is analyzed. The results show that configuring external permanent magnets improves the signal-to-noise ratio (SNR) of pulse-compressed signals after side lobe suppression when the multi-element Lamb wave EMAT is excited by tone-burst signals. The SNR of the detection echo can be increased by 9.8 dB when the multi-element EMAT with a four-turn meander line coil and a 13-bit Barker code sequence length is configured with three pairs of external permanent magnets. As the number of excitation signal cycles increases, the main lobe width of the pulse-compressed signal after sidelobe suppression exhibits a continuously increasing trend, and the SNR initially increases and then decreases. As the length of the Barker sequence increases, the SNR of the pulse-compressed signal after sidelobe suppression shows a continuously increasing trend. Considering the spatial resolution and SNR of the detected echo, the optimal parameters of the multi-element Lamb wave EMAT area 10-turn meander line coil, 11 excitation signal cycles, a 13-bit Barker sequence, and a configuration with three pairs of external permanent magnets. The new multi-element EMAT successfully generates Lamb waves in Barker code form when excited with a tone-burst signal. After the pulse compression, the Lamb wave signal effectively suppresses sidelobes by calculating delay time and performing sidelobe suppression. The multi-element Lamb wave EMAT based on tone-burst excitation and Barker code pulse compression technology improves ultrasonic signals' SNR and spatial resolution. When applied to guided wave detection inmetal plates or pipes with varying thicknesses, maintaining consistent spacing between array elements is crucial for pulse compression effects. Ensuringuniform and consistent magnetic field distribution for each array element is also beneficial.
石文泽, 李淇鑫, 卢超, 胡博, 刘远. 基于Barker码脉冲压缩技术的钢板多阵元Lamb波电磁超声换能器设计与优化[J]. 电工技术学报, 2024, 39(8): 2371-2387.
Shi Wenze, Li Qixin, Lu Chao, Hu Bo, Liu Yuan. Design and Optimization of Multi-Array Lamb Wave EMAT for Steel Plates Based on Barker Code Pulse Compression Technology. Transactions of China Electrotechnical Society, 2024, 39(8): 2371-2387.
[1] Vakhguelt A, Kapayeva S D, Bergander M J.Com- bination non-destructive test (NDT) method for early damage detection and condition assessment of boiler tubes[J]. Procedia Engineering, 2017, 188: 125-132. [2] 郭俊营, 李忠诚, 李文旭, 等. 美国在役核电厂安全壳钢衬里锈蚀及修复技术研究进展[J]. 建筑结构, 2022, 52(3): 127-134. Guo Junying, Li Zhongcheng, Li Wenxu, et al.Research progress on corrosion and repair technology of steel linear of containment in US external nuclear power plants[J]. Building Structure, 2022, 52(3): 127-134. [3] Mažeika L, Raišutis R, Jankauskas A, et al.High sensitivity ultrasonic NDT technique for detecting creep damage at the early stage in power plant steels[J]. International Journal of Pressure Vessels and Piping, 2022, 196: 104613. [4] Yu Shuo, Jin Hao, Cao Miaofeng.Study on corrosion characteristic of semi-ring steel plate for strength- ening shield tunnel under DC stray current[J]. Con- struction and Building Materials, 2022, 347: 128631. [5] Su Sanqing, Wang Pu, Shi Pengpeng, et al.Experi- ment and simulation on testing steel plate with corrosion defects via magnetic flux leakage method[J]. Journal of Magnetism and Magnetic Materials, 2022, 560: 169595. [6] Zhang Yusheng, Ming Hongliang, Tang Lichen, et al.Effect of the frequency on fretting corrosion behavior between Alloy 690TT tube and 405 stainless steel plate in high temperature pressurized water[J]. Tribology International, 2021, 164: 107229. [7] 徐庆林, 王向军, 张建春, 等. 921A钢板腐蚀电场的Frumkin修正[J]. 电工技术学报, 2020, 35(14): 2951-2958. Xu Qinglin, Wang Xiangjun, Zhang Jianchun, et al.Frumkin correction of corrosion electric field generated by 921A steel[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 2951-2958. [8] Singh S, Singh Grewal J, Rakha K.Erosion wear performance of HVOF and cold spray coatings deposited on T-91 boiler steel[J]. Materials Today: Proceedings, 2022, 62: 7509-7516. [9] Zou D L, Hao Y F, Wu H, et al.Safety assessment of large-scale all steel LNG storage tanks under wind-borne missile impact[J]. Thin-Walled Structures, 2022, 174: 109078. [10] 刘素贞, 陈云龙, 张闯, 等. 融合多维超声时频域特征的锂离子电池荷电状态估计[J]. 电工技术学报, 2023, 38(17): 4539-4550, 4563. Liu Suzhen, Chen Yunlong, Zhang Chuang,et al.State of charge estimation of lithium-ion batteries fused with multidimensional ultrasonic time- frequency domain features[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4539-4550, 4563. [11] 刘素贞, 袁路航, 张闯, 等. 基于超声时域特征及随机森林的磷酸铁锂电池荷电状态估计[J]. 电工技术学报, 2022, 37(22): 5872-5885. Liu Suzhen, Yuan Luhang, Zhang Chuang,et al.State of charge estimation of LiFeO4 batteries based on time domain features of ultrasonic waves and random forest[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5872-5885. [12] 吴立峰, 刘昊, 林仲钦, 等. 低温环境下锂离子电池荷电状态与超声透射飞行时间的关系研究[J]. 电工技术学报, 2022, 37(21): 5617-5626. Wu Lifeng, Liu Hao, Lin Zhongqin, et al.Relation- ship between state of charge of lithium-ion battery and ultrasonic transmission flight time at low temperature[J]. Transactions of China Electro- technical Society, 2022, 37(21): 5617-5626. [13] 刘继伦, 刘素贞, 金亮, 等. 用于测厚和裂纹检测的正交横波电磁超声换能器仿真分析及实验研究[J]. 电工技术学报, 2022, 37(11): 2686-2697. Liu Jilun, Liu Suzhen, Jin Liang, et al.Simulation and experiment of orthogonal shear waves with electromagnetic acoustic transducer for thickness measurement and crack detection[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2686-2697. [14] 蔡智超, 李毅博. 基于Halbach阵列电磁超声纵波换能器优化设计[J]. 电工技术学报, 2021, 36(21): 4408-4417. Cai Zhichao, Li Yibo.Optimum design of electro- magnetic acoustic longitudinal wave transducer based on Halbach array[J]. Transactions of China Elec- trotechnical Society, 2021, 36(21): 4408-4417. [15] 蔡智超, 孙翼虎, 赵振勇, 等. 基于时频分析和深度学习的表面粗糙度超声模式识别方法[J]. 电工技术学报, 2022, 37(15): 3743-3752. Cai Zhichao, Sun Yihu, Zhao Zhenyong, et al.A deep learning-based electromagnetic ultrasonic recognition method for surface roughness of workpeice[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3743-3752. [16] Zhai Guofu, Liang Bao, Li Xi, et al.High-temperature EMAT with double-coil configuration generates shear and longitudinal wave modes in paramagnetic steel[J]. NDT & E International, 2022, 125: 102572. [17] Tu Jun, Zhong Zhiwu, Song Xiaochun, et al.An external through type RA-EMAT for steel pipe inspection[J]. Sensors and Actuators A: Physical, 2021, 331: 113053. [18] Tkocz J, Greenshields D, Dixon S.High power phased EMAT arrays for nondestructive testing of as-cast steel[J]. NDT & E International, 2019, 102: 47-55. [19] 赵国梁, 刘素贞, 张闯, 等. 变厚板塑性形变超声非线性响应及其实验[J]. 电工技术学报, 2022, 37(20): 5092-5103. Zhao Guoliang, Liu Suzhen, Zhang Chuang et al. Ultrasonic nonlinear response of plate with varying thickness in plastic deformation and experiment[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5092-5103. [20] 刘素贞, 王淑娟, 张闯, 等. 钢板电磁超声表面波的仿真分析及缺陷定量检测[J]. 电工技术学报, 2020, 35(1): 97-105. Liu Suzhen, Wang Shujuan, Zhang Chuang, et al.Simulation analysis of electromagnetic acoustic surface wave of steel plate and quantitative defect detection[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 97-105. [21] 武建伟. 超声导波技术在管道检测中的试验分析[J]. 电工技术, 2023(3): 148-150. Wu Jianwei.Analysis of experiment in pipeline detection using ultrasonic guided wave technology[J]. Electric Engineering, 2023(3): 148-150. [22] 刘素贞, 张严伟, 张闯, 等. 电磁超声管道周向兰姆波仿真分析及缺陷检测特性研究[J]. 电工技术学报, 2017, 32(22): 144-151. Liu Suzhen, Zhang Yanwei, Zhang Chuang, et al.Research on simulation analysis of electromagnetic ultrasonic circumferential lamb waves and defect feature detection in pipeline[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 144-151. [23] Seung H M, Park C I, Kim Y Y.An omnidirectional shear-horizontal guided wave EMAT for a metallic plate[J]. Ultrasonics, 2016, 69: 58-66. [24] Palmer S B, Dixon S.Industrially viable non-contact ultrasound[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2003, 45(3): 211-217. [25] Ramp H O, Wingrove E R. Principles of pulse com- pression[J]. IRE Transactions on Military Electronics, 1961, MIL-5(2): 109-116. [26] Fu Juan, Wei Gang, Huang Qinghua, et al.Barker coded excitation with linear frequency modulated carrier for ultrasonic imaging[J]. Biomedical Signal Processing and Control, 2014, 13: 306-312. [27] Mitsuta H, Sakai Kaoru.High sensitivity detection of ultrasonic signal for nondestructive inspection using pulse compression method[J]. Microelectronics Reliability, 2019, 92: 172-178. [28] Laureti S, Ricci M, Mohamed M N I B, et al. Detection of rebars in concrete using advanced ultrasonic pulse compression techniques[J]. Ultrasonics, 2018, 85: 31-38. [29] 时亚, 石文泽, 陈果, 等. 钢轨踏面检测电磁超声表面波换能器优化设计[J]. 仪器仪表学报, 2018, 39(8): 239-249. Shi Ya, Shi Wenze, Chen Guo, et al.Optimal design of electromagnetic ultrasonic surface wave transducer for rail tread detection[J]. Chinese Journal of Scientific Instrument, 2018, 39(8): 239-249. [30] 刘素贞, 刘继伦, 张闯, 等. 一种新型窄磁铁聚焦式电磁超声表面波换能器[J/OL]. 中国电机工程学报: 1-13[2023-05-24]. http://kns.cnki.net/kcms/detail/11.2107.TM.20220406.1932.004.html. Liu Suzhen, Liu Jilun, Zhang Chuang, et al. A new electromagnetic acoustic transducer design with narrow magnet for generating focused surface wave[J/OL]. Proceedings of the CSEE: 1-13[2023-05-24]. http://kns.cnki.net/kcms/detail/11.2107.TM.20220406.1932.004.html. [31] Gandomzadeh D, Abbaspour-Fard M H. Numerical study of the effect of core geometry on the per- formance of a magnetostrictive transducer[J]. Journal of Magnetism and Magnetic Materials, 2020, 513: 166823. [32] Kang Lei, Dixon S, Wang Kaican, et al.Enhancement of signal amplitude of surface wave EMATs based on 3-D simulation analysis and orthogonal test method[J]. NDT & E International, 2013, 59: 11-17. [33] Pei Cuixiang, Zhao Siqi, Xiao Pan, et al.A modified meander-line-coil EMAT design for signal amplitude enhancement[J]. Sensors and Actuators A: Physical, 2016, 247: 539-546. [34] Sun Mingjian, Shen Yi, Zhang Wei.A wavelet threshold denoising method for ultrasonic signal based on EMD and correlation coefficient analysis[C]//2010 3rd International Congress on Image and Signal Processing, Yantai, China, 2010: 3992-3996. [35] Nie Zhichao, Wang Kui, Zhao Mingjie.Application of wavelet and EEMD joint denoising in nonlinear ultrasonic testing of concrete[J]. Advances in Materials Science and Engineering, 2018: 1-11. [36] Si Dan, Gao Bin, Guo Wei, et al.Variational mode decomposition linked wavelet method for EMAT denoise with large lift-off effect[J]. NDT & E International, 2019, 107: 102149. [37] Hao Kuansheng, Huang Songling, Zhao Wei, et al.Modeling and finite element analysis of transduction process of electromagnetic acoustic transducers for nonferromagnetic metal material testing[J]. Journal of Central South University, 2011, 18(3): 749-754. [38] Harris F J.On the use of windows for harmonic analysis with the discrete Fourier transform[J]. Proceedings of the IEEE, 1978, 66(1): 51-83. [39] Miller R.Fundamentals of radar signal processing (richards, M. A.; 2005)[book review[J]. IEEE Signal Processing Magazine, 2009, 26(3): 100-101. [40] Jafari-Shapoorabadi R, Konrad A, Sinclair A N.Comparison of three formulations for eddy-current and skin effect problems[J]. IEEE Transactions on Magnetics, 2002, 38(2): 617-620.