Simulation and Experiment of Orthogonal Shear Waves with Electromagnetic Acoustic Transducer for Thickness Measurement and Crack Detection
Liu Jilun1,2, Liu Suzhen1,2, Jin Liang1,2, Zhang Chuang1,2, Yang Qingxin1
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China
Abstract:Shear waves have high sensitivity when measuring thickness in vertical incident direction, but oblique incidence probes are required in crack detection. The two tasks can not be finished with a single transducer at the same time. In this paper, firstly, an electromagnetic acoustic transducer (EMAT) of orthogonal shear waves is designed. It permits the excitation of two orthogonal polarized shear waves in an aluminum plate using two butterfly coils. Then a methodology for simultaneously measuring thickness, detecting cracks and determining the direction of cracks using the time of flight and amplitude difference of the back-wall reflection recorded with the two coils in the pulse echo mode is proposed. A 3-D FE model of the orthogonal EMAT is established, and the wave field generated by the EMAT and its interaction with a crack in the plate are simulated. The effect of coil spacing on the symmetry of the wave field is studied and the influence of crack size on the amplitude difference of received signals is analyzed. Finally, the experimental results showed that good performance of thickness measurement, crack detection and determination of crack direction simultaneously using the orthogonal EMAT, which make the technique a potential new method for online inspection of corrosion thinning and crack defects.
刘继伦, 刘素贞, 金亮, 张闯, 杨庆新. 用于测厚和裂纹检测的正交横波电磁超声换能器仿真分析及实验研究[J]. 电工技术学报, 2022, 37(11): 2686-2697.
Liu Jilun, Liu Suzhen, Jin Liang, Zhang Chuang, Yang Qingxin. Simulation and Experiment of Orthogonal Shear Waves with Electromagnetic Acoustic Transducer for Thickness Measurement and Crack Detection. Transactions of China Electrotechnical Society, 2022, 37(11): 2686-2697.
[1] 吴志平, 陈振华, 戴联双, 等. 油气管道腐蚀检测技术发展现状与思考[J]. 油气储运, 2020, 39(8): 851-860. Wu Zhiping, Chen Zhenhua, Dai Lianshuang, et al.Development status and thinking of oil and gas pipeline corrosion detection technology[J]. Oil & Gas Storage and Transportation, 2020, 39(8): 851-860. [2] 帅健, 许葵. 腐蚀管线失效概率的评定方法[J]. 石油学报, 2003, 24(4): 86-89. Shuai Jian, Xu Kui.Assessment method for failure probability of corroded pipeline[J]. Acta Petrolei Sinica, 2003, 24(4): 86-89. [3] 杨理践, 诸海博, 邢燕好, 等. 基于电磁超声横波的铝板厚度检测技术[J]. 无损探伤, 2016, 40(4): 10-14. Yang Lijian, Zhu Haibo, Xing Yanhao, et al.Thickness detection of aluminum plate based on electromagnetic ultrasonic transverse wave[J]. Nondestructive Testing Technology, 2016, 40(4): 10-14. [4] 翟国富, 梁宝, 贾文斌, 等. 横波电磁超声相控阵换能器设计[J]. 电工技术学报, 2019, 34(7): 1441-1448. Zhai Guofu, Liang Bao, Jia Wenbin, et al.Design of the shear wave electromagnetic ultrasonic phased array transducer[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1441-1448. [5] 王淑娟, 李智超, 李鹏展, 等. 非铁磁材料表面波电磁超声换能器接收性能分析与优化设计[J]. 中国电机工程学报, 2015, 35(9): 2360-2365. Wang Shujuan, Li Zhichao, Li Pengzhan, et al.Receiving performance analysis and optimal design of surface wave electromagnetic acoustic transducers in nonferromagnetic materials[J]. Proceedings of the CSEE, 2015, 35(9): 2360-2365. [6] 孙文秀, 刘国强, 夏慧, 等. 非铁磁材料的电磁超声接收过程数值模拟及实验研究[J]. 电工技术学报, 2018, 33(19): 4443-4449. Sun Wenxiu, Liu Guoqiang, Xia hui, et al. Numerical simulation and experimental electromagnetic ultrasonic receiving process of non-ferromagnetic materials[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4443-4449. [7] 刘素贞, 王淑娟, 张闯, 等. 钢板电磁超声表面波的仿真分析及缺陷定量检测[J]. 电工技术学报, 2020, 35(1): 97-105. Liu Suzhen, Wang Shujuan, Zhang Chuang, et al.Electromagnetic acoustic transducer mechanism of steel plate and nonlinear ultrasonic testing of plastic damage[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 97-105. [8] 张闯, 李雪霏, 刘素贞, 等. 单向载荷下铝板电磁超声兰姆波的波速响应特性[J]. 电工技术学报, 2021, 36(8): 1579-1586. Zhang Chuang, Li Xuefei, Liu Suzhen, et al.Wave velocity response characteristics of electromagnetic ultrasonic Lamb wave of aluminum plate under unidirectional load[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1579-1586. [9] 翟国富, 李永虔, 刘玥怡, 等. 基于空间域谐波控制的电磁超声Lamb波模态抑制方法[J]. 电工技术学报, 2021, 36(16): 3467-3473. Zhai Guofu, Li Yongqian, Liu Yueyi, et al.Mode suppression method of Lamb wave excited by electromagnetic acoustic transducers based on spatial harmonic control[J]. Transactions of China Electrotechnical Society, 2021, 36(16): 3467-3473. [10] Hirao M, Ogi H.Electromagnetic acoustic transducers: noncontacting ultrasonic measurements using EMATs[M]. Japan: Springer, 2017. [11] Isla J, Cegla F.Optimization of the bias magnetic field of shear wave EMATs[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency, Control, 2016, 63(8): 1148-1160. [12] 江念, 王召巴, 陈友兴, 等. 电磁超声检测钢板厚度实验的参数优化[J]. 传感技术学报, 2015, 28(4): 498-502. Jiang Nian, Wang Zhaoba, Chen Youxing, et al.The experiment parameters of the steel-sheet thickness measurement by electromagnetic ultrasonic[J]. Chinese Journal of Sensors and Actuators, 2015, 28(4): 498-502. [13] 杨能军, 封礼发, 唐旭明, 等. 电磁超声横波换能器中线圈的优化设计[J]. 应用声学, 2019, 38(3): 428-433. Yang Nengjun, Feng Lifa, Tang Xuming, et al.Optimum design of coil in electromagnetic acoustic shear wave transducers[J]. Journal of Applied Acoustics, 2019, 38(3): 428-433. [14] 唐琴, 石文泽, 卢超, 等. 多层螺旋线圈电磁超声换能器优化设计及其实验研究[J]. 中南大学学报(自然科学版), 2020, 51(7): 1792-1803. Tang Qin, Shi Wenze, Lu Chao, et al.Optimization design and experimental study of multi-layer spiral coils electromagnetic acoustic transducer[J]. Journal of Central South University(Science and Technology), 2020, 51(7): 1792-1803. [15] 孙峥, 李永虔, 杨金旭, 等. 管道内检测电磁超声在线测厚装置[J]. 中国测试, 2017, 43(2): 69-72. Sun Zheng, Li Yongqian, Yang Jinxu, et al.Thickness gauging equipment for ILI of pipelines using EMATs[J]. China Measurement & Test, 2017, 43(2): 69-72. [16] Gan T, Ho K, Billson D, et al.Application of pulse compression signal processing techniques to electromagnetic acoustic transducer for noncontact thickness measurements and imaging[J]. American Institute of Physics, 2005, 76(5): 1-8. [17] 张晓冰, 房琦, 苏日亮, 等. 用于检测厚铝板缺陷的体波EMAT优化方法[J]. 电机与控制学报, 2017, 21(1): 108-114. Zhang Xiaobing, Fang Qi, Su Riliang, et al.Optimal method of bulk wave EMATs used in thick aluminum plate with single flat-bottom hole[J]. Electric Machines and Control, 2017, 21(1): 108-114. [18] Howard R.Quantitative evaluation of ultrasonic techniques for the detection and monitoring of corrosion in pipes[D]. London: Imperial College London, 2017. [19] 苏日亮,康磊,冯剑钊, 等. 基于电磁超声斜入射SV波的厚壁管道裂纹检测系统[J]. 无损检测, 2010, 32(8): 641-644. Su Riliang, Kang Lei, Feng Jianzhao, et al.Crack-inspection device based on electromagnetic acoustic angled shear vertical wave for thick-wall pipelines[J]. Nondestructive Testing, 2010, 32(8): 641-644. [20] 赵亮,张金,董子华, 等. 斜入射SH波厚壁管道内壁裂纹检测方法[J]. 应用声学, 2020, 39(5): 747-752. Zhao Liang, Zhang Jin, Dong Zihua, et al.The detection method of cracks on the inner wall of thick wall pipes with inclined beams of SH waves[J]. Journal of Applied Acoustics, 2020, 39(5): 747-752. [21] ASTM E2192—13 Standard guide for planar flaw height sizing by ultrasonics[S]. 2013. [22] 叶至灵, 韩赞东. 燃气管道腐蚀缺陷电磁超声检测方法[J]. 仪表技术与传感器, 2020 (8): 100-103. Ye Zhiling, Han Zandong.Electromagnetic acoustic transducer on corrosion detection of gas pipeline[J]. Instrument Technique and Sensor, 2020 (8): 100-103. [23] Willems H, Jaskolla B, Sickinger T, et al.A new ILI tool for metal loss inspection of gas pipelines using a combination of ultrasound, eddy current and MFL[C]//ASME International Pipeline Conference, IPC2010, Calgary Alberta Canada, 2010: 1-8. [24] 唐志峰, 孙兴涛, 张鹏飞, 等. 集测厚与导波检测于一体的复合式电磁超声换能器研究[J]. 仪器仪表学报, 2020, 41(9): 98-109. Tang Zhifeng, Sun Xingtao, Zhang Pengfei, et al.Research on composite electromagnetic ultrasonic transducer integrating thickness measurement and guided wave detection[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 98-109. [25] GB/T 33888—2017 无损检测仪器-超声测厚仪特性与验证[S]. 2017.