Abstract:Mechanical stress will affect the hysteresis loop characteristics and magnetostrictive loop characteristics of the motor core material, and then affect the motor loss and vibration performance. For this reason, it is necessary to effectively simulate the magnetic characteristics of electrical steel sheets under the coupling relationship of hysteresis-magnetostrictive strain-mechanical stress in the design phase of electrical products. Based on the principle of the minimum value of domain energy, this paper proposes an assembled domain structure model (ADSM) to realize the hysteresis and magnetostrictive loop hysteretic characteristics of electrical steel sheets under mechanical stress. The hysteresis energy density function is introduced to describe the hysteresis and magnetostrictive loop hysteretic effects, and the magnetoelastic energy is introduced to consider the influence of mechanical stress on the magnetic properties. The average value of the magnetic properties of multiple grains is used to represent the magnetic properties of polycrystalline electrical steel sheets. Finally, the model results are compared with the experimental measurement data, it is verified that the improved ADSM is more effective in characterizing the magnetic and magnetostrictive hysteretic characteristics of the electrical steel sheets than the traditional model, which lays the foundation for the accurate calculation of core loss and vibration performance.
[1] 黄雷, 包广清, 陈俊全. 基于Levenberg-Marquardt算法的改进Preisach模型磁特性模拟与验证[J]. 中国电机工程学报, 2020, 40(18): 6006-6015. Huang Lei, Bao Guangqing, Chen Junquan.Magnetic property simulation and verification with improved preisach hysteresis model based on levenberg-marquardt algorithm[J]. Proceedings of the CSEE, 2020, 40(18): 6006-6015. [2] Fallah E, Moghani J S.A new identification and implementation procedure for the isotropic vector Preisach model[J]. IEEE Transactions on Magnetics, 2008, (44): 37-42. [3] Hussain S, Lowther D A.An efficient implementation of the classical Preisach model[J]. IEEE Transactions on Magnetics, 2018, 54(3): 1-4. [4] 陈龙, 易琼洋, 贲彤, 等. 全局优化算法在Preisach磁滞模型参数辨识问题中的应用与性能对比[J].电工技术学报, 2021, 36(12): 2585-2593, 2606. Chen Long, Yi Qiongyang, Ben Tong, et al.Application and performance comparison of global optimization algorithms in the parameter identification problems of the Preisach hysteresis model[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(12): 2585-2593, 2606. [5] 赵小军, 刘小娜, 肖帆, 等. 基于Preisach模型的取向硅钢片直流偏磁磁滞及损耗特性模拟[J]. 电工技术学报, 2020, 35(9): 1849-1857. Zhao Xiaojun, Liu Xiaona, Xiao Fan, et al.Hysteretic and loss modeling of silicon steel sheet under the DC biased magnetization based on the Preisach model[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1849-1857. [6] 王旭, 张艳丽, 唐伟, 等. 旋转磁化下逆矢量Jiles-Atherton磁滞模型改进[J]. 电工技术学报, 2018, 33(S2): 257-262. Wang Xu, Zhang Yanli, Tang Wei, et al.Improvement of inverse vector Jiles-Atherton hysteresis model under rotating magnetization[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 257-262. [7] 耿超, 王丰华, 苏磊, 等. 基于人工鱼群与蛙跳混合算法的变压器Jiles-Atherton模型参数辨识[J]. 中国电机工程学报, 2015, 35(18): 4799-4807. Geng Chao, Wang Fenghua, Su Lei, et al.Parameter identification of Jiles-Atherton model for transformer based on hybrid artificial fish swarm and shuffled frog leaping algorithm[J]. Proceedings of the CSEE, 2015, 35(18): 4799-4807. [8] 刘任, 李琳, 王亚琦, 等. 基于随机性与确定性混合优化算法的Jiles-Atherton磁滞模型参数提取[J]. 电工技术学报, 2019, 34(11): 2260-2268. Liu Ren, Li Lin, Wang Yaqi, et al.Parameter extraction for Jiles-Atherton hysteresis model based on the hybrid technique of stochastic and deterministic optimization algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2260-2268. [9] 王洋,刘志珍.基于蛙跳模糊算法的Jiles-Atherton铁心磁滞模型参数确定[J]. 电工技术学报, 2017, 32(4): 154-161. Wang Yang, Liu Zhizhen.Determination of Jiles-Atherton core hysteresis model parameters based on fuzzy-shuffled frog leaping algorithm[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 154-161. [10] 迟青光, 张艳丽, 陈吉超, 等. 非晶合金铁心损耗与磁致伸缩特性测量与模拟[J]. 电工技术学报, 2021, 36(18): 3876-3883. Chi Qingguang, Zhang Yanli, Chen Jichao, et al.Measurement and modeling of loss and magneto-strictive properties for the amorphous alloy core[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3876-3883. [11] 祝丽花, 李晶晶, 朱建国. 服役条件下取向硅钢磁致伸缩模型的研究[J].电工技术学报, 2020, 35(19): 4131-4138. Zhu Lihua, Li Jingjing, Zhu Jianguo.Research on magnetostrictive model for oriented silicon steel under service conditions[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4131-4138. [12] Ito S, Mifune T, Matsuo T, et al.Energy-based magnetization and magnetostriction modeling of grain-oriented silicon steel under vectorial excitations[J]. IEEE Transactions on Magnetics, 2016, 52(5): 1-4. [13] Daniel L, Hubert O, Buiron N, et al.Reversible magneto-elastic behavior: a multiscale approach[J]. Journal of the Mechanics & Physics of Solids, 2008, 56(3):1018-1042. [14] Daniel L, Rekik M, Hubert O.A multiscale model for magneto-elastic behaviour including hysteresis effects[J]. Archive of Applied Mechanics, 2014, 84(9-11): 1307-1323. [15] Cullity B D, Graham C D.Introduction to magnetic materials[M]. New York: John Wiley &Sons, 2011. [16] 奥汉德利. 现代磁性材料原理和应用[M]. 北京: 化学工业出版社, 2002. [17] Spaldin N A.Magnetic materials: fundamentals and device applications[M]. 北京: 世界图书出版公司, 2015. [18] Langman R A.Origins of the magnetomechanical effect[J]. Journal of Magnetism & Magnetic Materials, 2002, 251: 229-243. [19] Vanoost D, Steentjes S, Peuteman J, et al.Magnetic hysteresis at the domain scale of a multi-scale material model for magneto-elastic behaviour[J]. Journal of Magnetism & Magnetic Materials, 2016, 414: 168-179. [20] Suwas S, Gurao N P.Crystallographic texture of materials[M]. Berlin, Germany: Springer, 2014. [21] 戴道生. 物质磁性基础[M]. 北京: 北京大学出版社, 2016.