Abstract:In pantograph catenary system,contact load directly influences the current-receiving stability and the service life of the slide and wire of the train. In this paper,through leaching copper carbon slide and copper wire of the friction pair of grinding experiment,analyzes current-receiving and wear of the different current,speed and load and through data fitting to establish prediction model of current relative stability coefficient and wear rate and current,velocity and load,because wear rate and current relative stability coefficient exist contradictory between each other,so applied the multi-objective particle swarm algorithm to solve current relative stability coefficient and wear rate of Pareto optimal front solution. Finally through based on signal to noise ratio of the multi-objective decision method to determine the optimal load based on the stability of current best and wear rate under the condition of relative minimum,for electric locomotive operation adjustment load provide theoretical foundation.
[1] 丁涛, 陈光雄, 朱旻昊. 法向载荷对不锈钢/浸金属碳载流摩擦磨损性能的影响[J]. 机械工程材料, 2010, 34(9): 5-8. [2] 李灵敏, 贾步超, 陈光雄. 接触网系统受流质量影响因素的实验研究[J]. 润滑与密封, 2008, 33(3): 32-35. [3] 郭凤仪, 马同立, 陈忠华, 等. 不同载流条件下滑动电接触特性[J]. 电工技术学报, 2009, 24(12): 18-23. [4] 徐晓峰, 宋克兴, 杜三明. 载流条件下铜基粉末冶金材料的摩擦磨损行为[J]. 材料保护, 2008, 41(7): 66-68. [5] 杨琳, 易茂中, 冉丽萍. 新型C/C-Cu复合滑动导电材料电摩擦磨损行为研究[J]. 摩擦学学报. 2009, 29(5): 458-463. [6] 郭凤仪, 任志玲, 马同立, 等. 滑动电接触磨损过程变化的实验研究[J]. 电工技术学报. 2010, 25(10): 24-29. [7] 郭京波, 杨绍普, 高国生. 高速铁路接触网-受电弓系统受流稳定性[J]. 动力学与控制学报, 2004, 2(3): 60-63. [8] Jahangiria M, Hashempourb M, Razavizadehb H, et al. Application and conceptual explanation of an energy-based approach for the modeling and prediction of sliding wear[J]. Wear, 2012, 274: 168-174. [9] Jonathan Swingler, John W McBride. Modeling of energy transport in arcing electrical contacts to determine mass loss[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, 1998, 21(1). [10] Pradeep Lall, Darshan Shinde, Brett Rickett, et al. Finite element models for simulation of wear in electrical contacts[J]. Auburn University Dept of Mechanical Engineering and Center for Advanced Vehicle Electronics Auburn, AL 36849. Molex, Inc. Lisle, IL 60532 [11] Giuseppe Bucca, Andrea Collina. A procedure for the wear prediction of collector strip and contact wire in pantograph-catenary system[J]. Wear, 2009, 266: 46-59. [12] Buhrkall L. DC components due to ice on the overhead contact wire of AC electrified railways[J]. Electron, Mater. Lett, 2005, 8(8): 380-389. [13] 松山晋作. 受电弓的受流摩擦学[J]. 电力牵引快报, 1997(1): 52-60. [14] Zhao H, Barber G C, Liu J. Friction and wear in high speed sliding with and without electrical current[J]. Wear, 2001, 249: 409-414. [15] Wang Y A, Li J X, Yan Y, et al. Effect of electrical current on tribological behavior of copper-impre- gnated metallized carbon against a Cu-Cr-Zr alloy[J]. Tribology International, 2012, 50: 26-34. [16] 张利彪, 周春光, 马铭, 等. 基于粒子群算法求解多目标优化问题[J]. 计算机研究与发展, 2004, 41(7): 1286-1291. [17] 杨维, 李歧强. 粒子群优化算法综述[J]. 中国工程科学, 2004, 6(5): 87-94. [18] 安伟刚. 多目标优化方法研究及其工程应用[D]. 西安: 西北工业大学, 2005. [19] 黄维. 高速接触网的受流评价浅析[J]. 科技创业, 2010 (5): 98-99. [20] 李灵敏. 接触网系统受流质量及浸金属碳载流磨损特性试验研究[D]. 成都: 西南交通大学, 2008.