Ultrasonic Nonlinear Response of Plate with Varying Thickness in Plastic Deformation and Experiment
Zhao Guoliang1,2, Liu Suzhen1,2, Zhang Chuang1,2, Jin Liang1,2, Yang Qingxin1
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China
Abstract:Since the propagation characteristics of ultrasound in plate with varying thickness (PWVT) are not clear, it is important to construct high-precision model of ultrasonic nonlinear response (UNR) to detect early damage on PWVT by ultrasonic nonlinearity. Based on the constitutive relationship of metal with plastic deformation, the distribution equation of plastic strain in PWVT under uniaxial tension is deduced. The model of UNR in PWVT is obtained by combining the distribution equation and the wave equation of ultrasound. The model shows that the ratio of A2 (the second harmonic amplitude) to $A_{\text{1}}^{\text{2}}$ (square of the fundamental wave amplitude), ${{A}_{\text{2}}}\text{/}A_{\text{1}}^{\text{2}}$, increases “quadratically” with the propagation distance and wave number, and ${{A}_{\text{2}}}\text{/}A_{\text{1}}^{\text{2}}$ is positively correlated with the plastic deformation at constant distance, namely, ${{A}_{\text{2}}}\text{/}A_{\text{1}}^{\text{2}}$ carries the information of plastic deformation in PWVT. The elastic-plastic model of aluminum alloy PWVT is constructed in COMSOL, which verifies the rationality of the linear equation in describing the distribution of PWVT’s plastic strain. The electromagnetic acoustic system is constructed and the effectiveness of the model of UNR is verified. In experiment, the PWVT specimens with different plastic deformation are prepared, and their propagation behaviors of ultrasound are studied by electromagnetic ultrasonic surface waves. The experimental results show that the model of UNR can describe the propagation behavior of ultrasound in PWVT accurately. This paper provides a theoretical basis for quantitative detection of plastic damage in PWVT by ultrasonic nonlinearity and a research idea for the application of ultrasonic nonlinearity to special-shaped structures.
赵国梁, 刘素贞, 张闯, 金亮, 杨庆新. 变厚板塑性形变超声非线性响应及其实验[J]. 电工技术学报, 2022, 37(20): 5092-5103.
Zhao Guoliang, Liu Suzhen, Zhang Chuang, Jin Liang, Yang Qingxin. Ultrasonic Nonlinear Response of Plate with Varying Thickness in Plastic Deformation and Experiment. Transactions of China Electrotechnical Society, 2022, 37(20): 5092-5103.
[1] 孙文秀, 刘国强, 夏慧, 等. 非铁磁材料的电磁超声接收过程数值模拟及实验研究[J]. 电工技术学报, 2018, 33(19): 4443-4449. Sun Wenxiu, Liu Guoqiang, Xia Hui, et al.Numerical simulation and experimental study of electromagnetic acoustic transducer receiving process in nonferro-magnetic material[J]. Transactions of China Electro-technical Society, 2018, 33(19): 4443-4449. [2] 门平, 董世运, 康学良, 等. 材料早期损伤的非线性超声诊断[J]. 仪器仪表学报, 2017, 38(5): 1101-1118. Men Ping, Dong Shiyun, Kang Xueliang, et al.Material early damage diagnosis with nonlinear ultrasound[J]. Chinese Journal of Scientific Instru-ment, 2017, 38(5): 1101-1118. [3] 敦怡, 师小红, 王广龙, 等. 微纳米级裂纹的非线性超声检测[J]. 光学精密工程, 2011, 19(1): 132-137. Dun Yi, Shi Xiaohong, Wang Guanglong, et al.Nonlinear ultrasonic test of micro-nano crack[J]. Optics and Precision Engineering, 2011, 19(1): 132-137. [4] 张剑锋, 轩福贞, 项延训. 材料损伤的非线性超声评价研究进展[J]. 科学通报, 2016, 61(14): 1536-1550. Zhang Jianfeng, Xuan Fuzhen, Xiang Yanxun.Evaluation of material damage using nonlinear ultrasonic wave[J]. Chinese Science Bulletin, 2016, 61(14): 1536-1550. [5] Shintani T, Murata Y.Evaluation of the dislocation density and dislocation character in cold rolled type 304 steel determined by profile analysis of X-ray diffraction[J]. Acta Materialia, 2011, 59(11): 4314-4322. [6] 刘素贞, 杨圣哲, 袁路航, 等. 含微裂纹铝材的电磁超声Lamb波混频非线性检测及量化分析[J]. 电工技术学报, 2021, 36(17): 3639-3648. Liu Suzhen, Yang Shengzhe, Yuan Luhang, et al.Nonlinear detection and quantitative analysis of electromagnetic ultrasonic Lamb wave mixing for aluminum with micro crack[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3639-3648. [7] Cai Zhichao, Cheng Hao, Liu Chengcheng.Nonlinear electromagnetic acoustic testing method for tensile damage evaluation[J]. Journal of Sensors, 2018, 4: 1745257. [8] Hikata A, Chick B B, Elbaum C, et al.Dislocation contribution to the second harmonic generation of ultrasonic waves[J]. Journal of Applied Physics, 1965, 36(1): 229-236. [9] de Lima W J N, Hamilton M F. Finite-amplitude waves in isotropic elastic plates[J]. Journal of Sound and Vibration, 2003, 265(4): 819-839. [10] Kim J Y, Qu Jianmin, Jacobs L J, et al.Acoustic nonlinearity parameter due to microplasticity[J]. Journal of Nondestructive Evaluation, 2006, 25(1): 28-36. [11] Cantrell J H, Yost W T.Nonlinear ultrasonic characterization of fatigue microstructures[J]. Inter-national Journal of Fatigue, 2001, 23: 487-490. [12] Pruell C, Kim J Y, Qu J, et al.Evaluation of fatigue damage using nonlinear guided waves[J]. Smart Materials and Structures, 2009, 18(3): 035003. [13] Bermes C, Kim J Y, Qu Jianmin, et al.Nonlinear lamb waves for the detection of material non-linearity[J]. Mechanical Systems and Signal Pro-cessing, 2008, 22(3): 638-646. [14] Choi S, Seo H, Jhang K Y.Noncontact evaluation of acoustic nonlinearity of a laser-generated surface wave in a plastically deformed aluminum alloy[J]. Research in Nondestructive Evaluation, 2015, 26(1): 13-22. [15] 刘素贞, 田钰霖, 张闯, 等. 铝合金拉伸塑性变形的非线性电磁超声检测[J]. 电工技术学报, 2020, 35(15): 3153-3160. Liu Suzhen, Tian Yulin, Zhang Chuang, et al.Nonlinear electromagnetic acoustic detection of aluminum alloys with tensile plastic deformation[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3153-3160. [16] 张立军, 米玉霞, 赵昕辉, 等. 计及风剪效应的垂直轴风力机叶片倾角优化[J]. 中国石油大学学报(自然科学版), 2018, 42(5): 135-140. Zhang Lijun, Mi Yuxia, Zhao Xinhui, et al.Optimization of blade dip angle for vertical axis wind turbine considering wind shear effect[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(5): 135-140. [17] 方玉财, 高志鹰, 闫萌萌, 等. 叶片挥舞振动后风轮流场特性[J]. 排灌机械工程学报, 2020, 38(4): 390-395. Fang Yucai, Gao Zhiying, Yan Mengmeng, et al.Characteristics of wind turbine flow field after blade vibration[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(4): 390-395. [18] 李喜朋. 变厚度板超声导波检测理论与技术[D]. 北京: 北京理工大学, 2014. [19] El-Kettani M E C, Luppé F, Guillet A. Guided waves in a plate with linearly varying thickness: experi-mental and numerical results[J]. Ultrasonics, 2004, 42(1-9): 807-812. [20] Marical P, El-Kettani M E C, Predoi M V. Guided waves in elastic plates with Gaussian section variation: experimental and numerical results[J]. Ultrasonics, 2007, 47(1-4): 1-9. [21] 尚世同, 尚瑜娟. 超声板波法在变厚度板检测中的应用[J]. 无损检测, 1998, 20(3): 80-82, 85. Shang Shitong, Shang Yujuan.Application of ultrasonic plate wave method to inspecting the plates with varied thicknesses[J]. Nondestructive Testing, 1998, 20(3): 80-82, 85. [22] 张闯, 李雪霏, 刘素贞, 等. 单向载荷下铝板电磁超声兰姆波的波速响应特性[J]. 电工技术学报, 2021, 36(8): 1579-1586. Zhang Chuang, Li Xuefei, Liu Suzhen, et al.Wave velocity response characteristics of electromagnetic ultrasonic Lamb wave of aluminum plate under unidirectional load[J]. Transactions of China Electro-technical Society, 2021, 36(8): 1579-1586. [23] Bender F A, Kim J Y, Jacobs L J, et al.The gen-eration of second harmonic waves in an isotropic solid with quadratic nonlinearity under the presence of a stress-free boundary[J]. Wave Motion, 2013, 50(2): 146-161. [24] Van Den Abeele K E A. Elastic pulsed wave propagation in media with second-or higher-order nonlinearity. Part I. Theoretical framework[J]. The Journal of the Acoustical Society of America, 1996, 99(6): 3334-3345. [25] Rao V V S J, Kannan E, Prakash R V, et al. Observation of two stage dislocation dynamics from nonlinear ultrasonic response during the plastic deformation of AA7175-T7351 aluminum alloy[J]. Materials Science and Engineering: A, 2009, 512(1-2): 92-99. [26] Mondal C, Mukhopadhyay A, Sarkar R.A study on precipitation characteristics induced strength variation by nonlinear ultrasonic parameter[J]. Journal of Applied Physics, 2010, 108(12): 1617. [27] Zhang Jianfeng, Xuan Fuzhen, Xiang Yanxun, et al.Non-linear ultrasonic response of plastically defor-med aluminium alloy AA 7009[J]. Materials Science and Technology, 2013, 29(11): 1304-1309. [28] Zhang Jianfeng, Li Shenyu, Xuan Fuzhen, et al.Effect of plastic deformation on nonlinear ultrasonic response of austenitic stainless steel[J]. Materials Science and Engineering: A, 2015, 622: 146-152.