Suppression of Voltage Spike in Resonant Switched Capacitor Converter Considering Parasitic Inductance
Liu Yan1, Yang Xiaofeng1, Yan Chengzhang1, Chen Qian2, Wen Piao1,3, Igarashi Seiki4
1. School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China; 2. Electric Power Research Institute State Grid Zhejiang Electric Power Co. Ltd Hangzhou 310014 China; 3. Key Laboratory of Optical Engineering Chinese Academy of Sciences Chengdu 610209 China; 4. Fuji Electric Co. Ltd Tokyo 141-0032 Japan
Abstract:The resonant switched capacitor converter (RSCC) based on silicon carbide (SiC) devices is suitable for high operation efficiency and power density due to its soft switching characteristics. However, the high operation frequency makes it sensitive to the parasitic inductance, which may cause the voltage spike of switching devices. By analyzing the RSCC laminated busbar model, the equivalent circuit with parasitic inductance was built. The influence of parasitic inductance on the operating mode of the circuit was studied, and the relationship between the parasitic inductance and the voltage spike of the switching devices was derived. Accordingly, this paper proposed two voltage spike suppression methods for optimizing the laminated busbar model and the snubber capacitance. Simulation and experimental results verified the effectiveness and feasibility of the voltage spike suppression methods in this paper.
[1] Shanbog N S, Pushpa K R.Double input Boost/ Y-source DC-DC converter for renewable energy sources[C]//2nd International Conference on Power and Embedded Drive Control (ICPEDC), Auckland, 2019: 1-6. [2] Matsumori H, Kosaka T, Sekido K, et al.Isolated DC-DC converter utilizing GaN power device for automotive application[C]//IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019: 1704-1709. [3] Han Byung-Moon.Grid-tied power converter for battery energy storage composed of 2-stage DC-DC converter[C]//IEEE Power & Energy Society General Meeting, Vancouver, BC, 2013: 1-5. [4] 冷明全, 程为彬, 刘峰, 等. 光伏发电系统前级宽输入DC/DC Boost变换器[J]. 电气传动, 2020, 50(3): 37-39. Leng Mingquan, Cheng Weibin, Liu Feng, et al.DC/DC Boost converter with wide input voltage in photovoltaic power generation system as pre-stage[J]. Electric Drive, 2020, 50(3): 37-39. [5] 年珩, 叶余桦. 三端口隔离双向DC-DC变换器模型预测控制技术[J]. 电工技术学报, 2020, 35(16): 3478-3488. Nian Heng, Ye Yuhua.Model predictive control of three-port isolated bidirectional DC-DC converter[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3478-3488. [6] 杨东江, 段彬, 丁文龙, 等. 一种带辅助双向开关单元的宽输入电压范围LLC谐振变换器[J]. 电工技术学报, 2020, 35(4): 775-785. Yang Dongjiang, Duan Bin, Ding Wenlong, et al.An improved LLC resonant converter with auxiliary bi-directional switch for wide-input-voltage range applications[J]. Transactions of China Electrotech- nical Society, 2020, 35(4): 775-785. [7] Zhang Yixuan, Chen Guipeng, Hu Yihua, et al.Cascaded multilevel inverter based power and signal multiplex transmission for electric vehicles[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(2): 123-129. [8] 李楠, 王萍, 贝太周, 等. 新型高增益开关电容直流升压变换器[J]. 电力系统及其自动化学报, 2017, 29(6): 83-89. Li Nan, Wang Ping, Bei Taizhou, et al.Novel high-voltage gain switched-capacitor DC-DC Boost converter[J]. Proceedings of the CSU-EPSA, 2017, 29(6): 83-89. [9] 侯世英, 陈剑飞, 孙韬, 等. 基于Switch-Capacitor网络的单开关升压变换器[J]. 电工技术学报, 2013, 28(10): 206-216. Hou Shiying, Chen Jianfei, Sun Tao, et al.A single- switch step-up converter based on Switch-Capacitor network[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 206-216. [10] 谢子殿, 艾建. 一种基于开关电感电容技术的耦合电感升压变换器[J]. 黑龙江科技大学学报, 2015, 25(6): 670-675. Xie Zidian, Ai Jian.A novel high step-up converter with a switched-coupled-inductor-capacitor structure[J]. Journal of Heilongjiang University of Science and Technology, 2015, 25(6): 670-675. [11] 雷浩东, 郝瑞祥, 游小杰, 等. 基于开关电容和三绕组耦合电感的高电压增益DC-DC变换器[J]. 电工技术学报, 2020, 35(17): 3666-3677. Lei Haodong, Hao Ruixiang, You Xiaojie, et al.High voltage gain DC-DC converter with switched- capacitor and three-winding coupled inductor[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3666-3677. [12] 李永东, 徐杰彦, 杨涵棣, 等. 多电平变换器拓扑结构综述及展望[J]. 电机与控制学报, 2020, 24(9): 1-12. Li Yongdong, Xu Jieyan, Yang Handi, et al.Overview and prospect of multilevel converter topology[J]. Electric Machines and Control, 2020, 24(9): 1-12. [13] Shoyama M, Ninomiya T.Output voltage control of resonant Boost switched capacitor converter[C]//Power Conversion Conference, Nagoya, 2007: 899-903. [14] Salehian A, Hashemi S S, Beiranvand R, et al.Simulation of a step-up resonant switched-capacitor converter under the CCM operation mode[C]//10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Shiraz, Iran, 2019: 230-235. [15] 刘瑞煌, 杨景刚, 贾勇勇, 等. 中压直流配电网中直流变压器工程化应用[J]. 电力系统自动化, 2019, 43(23): 131-140. Liu Ruihuang, Yang Jinggang, Jia Yongyong, et al.Engineering applications of DC transformer in medium- voltage DC distribution network[J]. Automation of Electric Power Systems, 2019, 43(23): 131-140. [16] Ino K, Miura M, Nakano Y, et al.SiC power device evolution opening a new era in power electronics[C]// IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Xi'an, China, 2019: 1-3. [17] Imaizumi M, Hasegawa S, Sumitani H, et al.Remarkable advances in SiC power device technology for ultra high power systems[C]//IEEE International Electron Devices Meeting, Washington, DC, 2013: 1-4. [18] Okuda T, Nakamura Y, Hikihara T, et al.Analysis of transient behavior of SiC power MOSFETs based on surface potential model and its application to Boost converter[C]//IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WIPDA), Fayetteville, AR, 2016: 101-104. [19] 史方圆, 李睿, 蔡旭. 35kV全SiC光伏发电单元中高频隔离变换器的寄生参数影响及抑制方法[J]. 中国电机工程学报, 2020, 40(6): 1787-1801. Shi Fangyuan, Li Rui, Cai Xu.Influence of parasitic parameters and its suppression methods of high frequency isolated converter in 35kV all-SiC photo- voltaic generation unit[J]. Proceedings of the CSEE, 2020, 40(6): 1787-1801. [20] 王淼, 杨晓峰, 郑琼林. 谐振开关电容变换器中硬开通问题[J]. 电工技术学报, 2019, 34(增刊1): 154-162. Wang Miao, Yang Xiaofeng, Zheng Trillion Q.The hard turning-on problems of resonant switched capacitor converter[J]. Transactions of China Electro- technical Society, 2019, 34(S1): 154-162. [21] Taghziadeh H, Cross A M.The effect of circuit parasitics on resonant switched capacitor converters[C]// 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), Geneva, 2015: 1-9. [22] Beiranvand R.Analysis of a switched-capacitor converter above its resonant frequency to overcome voltage regulation issue of resonant SCCs[J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5315-5325. [23] 梅纯. 开关电容变换器的研究[D]. 武汉: 华中科技大学, 2007. [24] 周宇豪. 模块化多电平谐振式DC-DC变换器的研究[D]. 北京: 北京交通大学, 2019. [25] 周志达, 葛琼璇, 赵鲁, 等. 碳化硅器件建模与杂散参数影响机理[J]. 电机与控制学报, 2020, 24(1): 27-37. Zhou Zhida, Ge Qiongxuan, Zhao Lu, et al.Modeling of SiC power device and study of nonlinear stray parameters impact[J]. Electric Machines and Control, 2020, 24(1): 27-37. [26] 王莉娜, 马浩博, 袁恺, 等. SiC MOSFET半桥电路开关瞬态过电流、过电压建模与影响因素分析[J]. 电工技术学报, 2020, 35(17): 3652-3665. Wang Lina, Ma Haobo, Yuan Kai, et al.Modeling and influencing factor analysis of SiC MOSFET half- bridge circuit switching transient overcurrent and overvoltage[J]. Transactions of China Electrotech- nical Society, 2020, 35(17): 3652-3665. [27] 朱俊杰, 原景鑫, 聂子玲, 等. 基于全碳化硅功率组件的叠层母排优化设计研究[J]. 中国电机工程学报, 2019, 39(21): 6383-6393. Zhu Junjie, Yuan Jingxin, Nie Ziling, et al.Optimum design of planer busbar based on all-silicon carbide power module[J]. Proceedings of the CSEE, 2019, 39(21): 6383-6393. [28] Yuan Zhao, Peng Hongwu, Deshpande A, et al.Design and evaluation of laminated busbar for three- level T-type NPC power electronics building block with enhanced dynamic current sharing[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 395-406. [29] Wang Zhongjing, Wu Yuheng, Mahmud M, et al.Busbar design and optimization for voltage overshoot mitigation of a silicon carbide high-power three-phase T-type inverter[J]. IEEE Transactions on Industrial Electronics, 2021, 36(1): 204-214. [30] Lu Binxian, Pickert V, Hu Junzhou, et al.Deter- mination of stray inductance of low-inductive laminated planar multiport busbars using vector synthesis method[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1337-1347. [31] 李广卓. 大容量变流器叠层母排杂散电感性能分析[D]. 杭州: 浙江大学, 2019. [32] 董玉斐, 罗皓泽, 杨贺雅, 等. 1.2MV·A混合钳位五电平变流模块的结构布局优化和叠层母排设计[J]. 电工技术学报, 2016, 31(8): 11-18. Dong Yufei, Luo Haoze, Yang Heya, et al.Enginee- ring design for structure and bus bar of 1.2MV·A hybrid clamped five-level converter module[J]. Transactions of China Electrotechnical Society, 2016, 31(8): 11-18. [33] 郑丹, 张少昆, 李磊, 等. SiC MOSFET开关损耗测试方法研究[J]. 中国电机工程学报, 2020, 40(9): 2975-2983. Zheng Dan, Zhang Shaokun, Li Lei, et al.Research on switching losses testing method for SiC MOSFET[J]. Proceedings of the CSEE, 2020, 40(9): 2975-2983.