Steady Temperature Equalization Method for the Parallel IGBTs Considering the Thermal Resistance and the Matching Emitter Parasitic Inductance
Fan Jiayu1, Zheng Feilin1, Wang Yaohua2, Li Xuebao1, Cui Xiang1
1. State Key Laboratory of Alternate Electrical Power System With Renewable energy Sources North China Electric Power University Beijing 102206 China; 2. State Key Laboratory of Advanced Power Transmission Technology Global Energy Interconnection Research Institute Co. Ltd Beijing 102209 China
Abstract:In the IGBT device with the parallel chips, the thermal resistance and emitter parasitic inductance are the key parameters which determine the steady junction temperature distribution. Therefore, to equalize the steady junction temperature of the parallel chips, it is vital to design the thermal resistance and emitter parasitic inductance reasonably. In this paper, an electrothermal model with two parallel IGBT chips is established to investigate the impacts of the junction temperature and the emitter parasitic inductance on the dynamic losses. Then, the effects of thermal resistance and emitter parasitic inductance on the temperature distribution are further studied by the electrothermal coupling simulation. On this basis, the steady temperature equalization method for the parallel IGBT chips is put forward. The proposed method can obtain the reference values of the thermal resistance or emitter parasitic inductance by solving the equation set rather than the complicated electrothermal calculation. Finally, taking two parallel IGBT chips as an example, the steady junction temperature of the parallel chips at different frequencies is demonstrated, which shows the effectiveness of the method.
范迦羽, 郑飞麟, 王耀华, 李学宝, 崔翔. 计及热阻与发射极电感匹配的并联IGBT芯片稳态结温均衡方法[J]. 电工技术学报, 2022, 37(12): 3028-3037.
Fan Jiayu, Zheng Feilin, Wang Yaohua, Li Xuebao, Cui Xiang. Steady Temperature Equalization Method for the Parallel IGBTs Considering the Thermal Resistance and the Matching Emitter Parasitic Inductance. Transactions of China Electrotechnical Society, 2022, 37(12): 3028-3037.
[1] Eicher S, Rahimo M, Tsyplakov E, et al.4.5kV press pack IGBT designed for ruggedness and reliabi-lity[C]//2004 IEEE Industry Applications Conference, Seattle, 2004: 1534-1539. [2] 邓二平. 压接型IGBT器件内部电-热-力多物理场耦合模型研究[D]. 北京: 华北电力大学, 2018. [3] 陈宇, 周宇, 罗皓泽, 等. 计及芯片导通压降温变效应的功率模块三维温度场解析建模方法[J]. 电工技术学报, 2021, 36(12): 2459-2470. Chen Yu, Zhou Yu, Luo Haoze, et al.Analytical 3D temperature field model for power module con-sidering temperature effect of semiconductor voltage drop[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2459-2470. [4] 顼佳宇, 李学宝, 崔翔, 等. 高压大功率IGBT器件封装用有机硅凝胶的制备工艺及耐电性[J]. 电工技术学报, 2021, 36(2): 352-361. Xu Jiayu, Li Xuebao, Cui Xiang, et al.Preparation process and breakdown properties of silicone gel used for the encapsulation of IGBT power modules[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 352-361. [5] Wang Bo, Zhou Luowei, Zhang Yi, et al.Active junction temperature control of IGBT based on adjusting the turn-off trajectory[J]. IEEE Transactions on Power Electronics, 2018, 33(7): 5811-5823. [6] 张军, 张犁, 成瑜. IGBT模块寿命评估研究综述[J].电工技术学报, 2021, 36(12): 2560-2575. Zhang Jun, Zhang Li, Cheng Yu.Review of the lifetime evaluation for the IGBT module[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(12): 2560-2575. [7] Zhang Yiming, Deng Erping, Zhao Zhibin, et al.Sequential Vce(T) method for the accurate measure-ment of junction temperature distribution within press-pack IGBTs[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 3735-3743. [8] Chen Nan, Chimento F, Nawaz M, et al.Dynamic characterization of parallel-connected high-power IGBT modules[J]. IEEE Transactions on Industry Application, 2015, 51(1): 539-546. [9] 顾妙松, 崔翔, 彭程, 等. 外部汇流母排对压接型IGBT器件内部多芯片并联均流特性的影响[J]. 中国电机工程学报, 2020, 40(1): 234-245. Gu Miaosong, Cui Xiang, Peng Cheng, et al.Influence of the external busbar on current sharing performance inside a multi-chip press-pack IGBT device[J]. Proceedings of the CSEE, 2020, 40(1): 234-245. [10] Zhang Yiming, Deng Erping, Zhao Zhibin, et al.A physical thermal network model of press pack IGBTs considering spreading and coupling effects[J]. IEEE Transactions on Components, Packaging and Manufa-cturing Technology, 2020, 10(10): 1674-1683. [11] Tang Yunyu, Ma Hao.Dynamic electrothermal model of paralleled IGBT modules with unbalanced stray parameters[J]. IEEE Transactions on Power Electro-nics. 2017, 32(2): 1385-1399. [12] Mantooth A, Hefner A.Electrothermal simulation of an IGBT PWM inverter[J]. IEEE Transactions on Power Electronics, 1997, 12(3): 474-484. [13] Hefner A.A dynamic electro-thermal model for the IGBT[J]. IEEE Transactions on Industry Application, 1994, 30(2): 394-405. [14] Hefner A, Blackburn D.Thermal component models for electrothermal network simulations[J]. IEEE Transa-ctions on Components, Packaging, and Manufacturing Technology, 1994, 17(3): 413-424. [15] Luo Yifei, Xiao Fei, Liu Binli, et al.A physics-based transient electrothermal model of high-voltage press-pack IGBTs under HVDC interruption[J]. IEEE Transa-ctions on Power Electronics, 2020, 35(6): 5660-5669. [16] Ngwendson L, Deviny I, Coulbeck L, et al.Exploring the RBSOA boundaries of a 6.5kV/1000A trench gate IGBT module at different temperatures[C]//Inter-national Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Germany, 2020: 243-247. [17] Schlapbach U, Rahimo M, Arx C, et al.1200V IGBTs operating at 200℃? an investigation on the potentials and the design constraints[C]//Proceedings of Inter-national Symposium on Power Semiconductor Devices and IC's, Jeju, 2007: 9-12. [18] Hu Ji, Alatise O, Gonzalez J, et al.Robustness and balancing of parallel-connected power device: SiC versus CoolMOS[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2092-2102. [19] 彭程, 李学宝, 张冠柔, 等. 压接型IGBT芯片动态特性实验平台设计与实现[J]. 电工技术学报, 2021, 36(12): 2471-2481. Peng Cheng, Li Xuebao, Zhang Guanrou, et al.Design and implementation of an experimental platform for dynamic characteristics of press-pack IGBT chip[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2471-2481. [20] 丁强, 何湘宁. 采用Saber模型研究IGBT工作极限特性[J]. 电工技术学报, 2001, 16(2): 65-69, 60. Ding Qiang, He Xiangning.Research on IGBT operation limits by using the model of Saber[J]. Transactions of China Electrotechnical Society, 2001, 16(2): 65-69, 60.