Abstract:It is difficult to calculate the thermal resistant of filling layer within optical fiber in 3-core optical composite submarine power cable. The temperature relationship between optical fiber and conductor can not be established until the above problem is resolved. In this paper, the temperature at external diameter of filling layer was calculated using virtual thermal source and image method, based on the established thermal circuit of 3-core submarine power cable. Then the temperature at external diameter of armor layer was calculated. The thermal resistant between optical fiber and external diameter of armor layer was calculated according to Fourier heat transfer theory. The summation of thermal resistant between inner diameter of filling layer and external diameter of armor layer was acquired by shape factor method. Finally, the thermal resistant of filling layer within optical fiber was obtained, as the difference between the above summation and the thermal resistant. The temperature relationship equation between optical fiber and conductor was accordingly established based on thermal circuit. It is indicated the relationship between the temperatures of optical fiber and conductor in 3-core submarine power cable is linear. The temperature of optical fiber will rise 1℃ if the temperature of conductor rises 1.15℃. The temperature of optical fiber will rise 1℃ if the ambient temperature rises 7.7℃ with constant temperature of conductor. The temperature of conductor can be calculated according to temperatures of optical fiber and environment, which can be regarded as the theoretical basis for monitoring the temperature of conductor and calculating current-carrying capacity for 3-core submarine power cables.
吕安强, 寇欣, 尹成群, 李永倩. 三芯海底电缆中复合光纤与导体温度关系建模[J]. 电工技术学报, 2016, 31(18): 59-65.
Lü Anqiang, Kou Xin, Yin Chengqun, Li Yongqian. Modeling of Temperature Relation between Optical Fiber and Conductor in 3-Core Submarine Power Cable. Transactions of China Electrotechnical Society, 2016, 31(18): 59-65.
[1] 赵健康, 陈铮铮. 国内外海底电缆工程研究综述[J]. 华东电力, 2011, 39(9): 1477-1480. Zhao Jiankang, Chen Zhengzheng. Research on submarine cable projects at home and abroad[J]. East China Electric Power, 2011, 39(9): 1477-1480. [2] 吕安强, 李永倩, 李静, 等. 利用光纤应变判断光电复合海缆锚害程度的有限元分析法[J]. 电工技术学报, 2014, 29(11): 261-268. Lü Anqiang, Li Yongqian, Li Jing, et al. Finite element analysis for judging the anchor damage degree of photoelectric composite submarine cable by optical fiber strain[J]. Transactions of China Electro- technical Society, 2014, 29(11): 261-268. [3] 周厚强, 许勇君, 张磊, 等. 沿海风电场用三芯XLPE海底电缆设计方案的可行性分析[J]. 中国电业, 2012(5): 61-63. Zhou Houqiang, Xu Yongjun, Zhang Lei, et al. Feasibility analysis on the design of three-core XLPE submarine cable for coastal wind farm[J]. China Electric Power Technology, 2012(5): 61-63. [4] 吕安强, 李永倩, 李静, 等. 基于BOTDR的光纤复合海底电缆应变/温度监测[J]. 高电压技术, 2014, 40(2): 533-539. Lü Anqiang, Li Yongqian, Li Jing, et al. Strain and temperature monitoring of optical fiber composite submarine power cable based on brillouin optical time domain reflectometer[J]. High Voltage Engin- eering, 2014, 40(2): 533-539. [5] 吴晓文, 舒乃秋, 李洪涛, 等. 气体绝缘输电线路温升数值计算及相关因素分析[J]. 电工技术学报, 2013, 28(1): 65-72. Wu Xiaowen, Shu Naiqiu, Li Hongtao, et al. Temperature rise numerical calculation and correla- tive factors analysis of gas-insulated transmission lines[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 65-72. [6] 梁永春, 李彦明, 柴进爱, 等. 地下电缆群稳态温度场和载流量计算新方法[J]. 电工技术学报, 2007, 22(8): 185-190. Liang Yongchun, Li Yanming, Chai Jinai, et al. A new method to calculate the steady-state temperature field and ampacity of underground cable system[J]. Transactions of China Electrotechnical Society, 2007, 22(8): 185-190. [7] 马志钦, 廖瑞金, 郝建, 等. 温度对油纸绝缘极化去极化电流的影响[J]. 电工技术学报, 2014, 29(4): 290-297. Ma Zhiqin, Liao Ruijin, Hao Jian, et al. Influence of Temperature on polarization and depolarization current of oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 290-297. [8] 马晓明, 范春菊, 胡天强, 等. 基于周期残差修正灰色模型的输电线路载流量的预测与分析[J]. 电力系统保护与控制, 2012, 40(19): 19-23. Ma Xiaoming, Fan Chunju, Hu Tianqiang, et al. Forecasting and analysis for current carrying capacity of transmission lines based on period residual modification grey model[J]. Power System Protection and Control, 2012, 40(19): 19-23. [9] 张磊, 郑新龙, 俞恩科, 等. 铠装回路串联电阻对110kV海底电缆热效应影响的试验研究[J]. 电力系统保护与控制, 2014, 42(6): 58-62. Zhang Lei, Zheng Xinlong, Yu Enke, et al. Experimental research on the impact of armored circuit with series resistance on thermal effect of 110kV submarine cable[J]. Power System Protection and Control, 2014, 42(6): 58-62. [10] 陈诚. 电缆沟敷设10kV三芯电缆温度场计算及试验研究[D]. 广州: 华南理工大学, 2012. [11] 游勇. 排管敷设10kV三芯交联聚乙烯电缆载流量计算与实验研究[D]. 广州: 华南理工大学, 2013. [12] 段佳冰, 尹成群, 吕安强, 等. 基于IEC 60287和有限元法的高压海底电缆温度场分析方法[J]. 高压电器, 2013, 42(3): 19-23. Duan Jiabing, Yin Chengqun, Lü Anqiang, et al. Analysis method for temperature of high voltage submarine cable based on IEC 60287 and finite element[J]. High Voltage Apparatus, 2013, 42(3): 19-23. [13] 马国栋. 电线电缆载流量[M]. 北京: 中国电力出版社, 2003. [14] 胡倩楠. 计算10kV三芯电缆导体温度的热路模型及应用研究[D]. 广州: 华南理工大学, 2013. [15] 闫澜锋. 10kV三芯电缆温度场分布特性及导体温度计算的仿真与实验研究[D]. 广州: 华南理工大学, 2012. [16] 吕安强, 李永倩, 李静, 等. 光电复合海缆中光纤与导体温度关系的有限元分析方法[J]. 电工技术学报, 2014, 29(4): 91-96. Lü Anqiang, Li Yongqian, Li Jing, et al. Finite element analysis method for relationship between conductor and optical fiber in optic-electric com- posite submarine cable[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 91-96.