Electromagnetic Thermal Analysis for Short-Term High-Overload Permanent Magnet Synchronous Motor
Liu Yuxi1, 2, Li Liyi2, Cao Jiwei2, Gao Qinhe1, Sun Zhaoxu2
1. Military Key Laboratory for Armament Launch Theory & Technology Rocket Forces Engineering University Xi’ an 710025 China; 2. School of Electrical Engineering and Automation Harbin Institute of Technology Harbin 150001 China
Abstract:Short-term high-overload permanent magnet synchronous motors with high overload ratio, high dynamic response, and high reliability are widely used in aerospace and other applications. To improve the ability to the maximum torque output of the motor, the effect of magnetic and electric load on the motor of the overload capacity, and winding turns on the output of the extreme power at a constant speed were researched. The influence of the overload times on the loss distribution law of the motor was analyzed. The temperature rises of long-term work at room temperature and high temperature, short-term cycle work and short-term high overload conditions at room temperature, were obtained. The temperature rise of the heat capacity of housing was analyzed. Equipped with a motor experiment platform in different environments, the changes of the temperature rise at different ambient temperatures and at different working conditions was verified and current overload times at extreme torque conditions was tested. As the experimental results are consistent with the simulation, the theory is correct that can be theoretical reference for the short-time high overload motor.
[1] 唐勇斌, 郝晓宇, 揭军, 等. 耐高温永磁电机发展现状与关键技术[J]. 导航定位与授时, 2016, 3(2): 65-70. Tang Yongbin, Hao Xiaoyu, Jie Jun, et al.Development and key technology of heat-resisting permanent magnet motors[J]. Navigation Positioning & Timing, 2016, 3(2): 65-70. [2] 王晓远, 高鹏, 赵玉双. 电动汽车用高功率密度电机关键技术[J]. 电工技术学报, 2015, 30(6): 53-59. Wang Xiaoyuan, Gao Peng, Zhao Yushuang.Key technology of high power density motors in electric vehicles[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 53-59. [3] 陈浩, 刘向东, 赵静. 高带宽低速大转矩永磁同步电动机的优化设计[J]. 电工技术学报, 2014, 29(1): 108-114. Chen Hao, Liu Xiangdong, Zhao Jing.Design and optimization of a high-bandwidth low-speed high-torque permanent magnetic synchronous motor[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 108-114. [4] 魏娟, 闫海媛, 郭喜彬, 等. 舵机用大功率永磁同步伺服电机电磁设计[J]. 微特电机, 2016, 44(10): 18-21. Wei Juan, Yan Haiyuan, Guo Xibin, et al.Electromagnetic design of servo permanent magnet synchronous motor with high power[J]. Small & Special Electrical Machine, 2016, 44(10): 18-21. [5] 栗瑞雪. 高功率密度电动舵机的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [6] 李立毅, 张江鹏, 闫海媛, 等. 高过载永磁同步电机的电磁特性[J]. 电工技术学报, 2017, 32(2): 125-134. Li Liyi, Zhang Jiangpeng, Yan Haiyuan, et al.Electromagnetic characteristics on high overload permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 125-134. [7] 曹继伟. 永磁同步电机高温超导电枢绕组的研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [8] 黄旭珍. 短时高过载无槽圆筒型永磁直线电机电磁及温升特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. [9] 李立毅, 黄旭珍, 寇宝泉, 等. 基于有限元法的圆筒型直线电机温度场数值计算[J]. 电工技术学报, 2013, 28(2): 132-138. Li Liyi, Huang Xuzhen, Kou Baoquan, et al.Numerical calculation of temperature field for tubular linear motor based on finite element method[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 132-138. [10] 何海翔, 陈志辉, 梅庆枭, 等. 聚磁型无源转子横向磁通永磁电机电磁力及转子机械强度的分析[J]. 电工技术学报, 2017, 32(15): 10-16. He Haixiang, Chen Zhihui, Mei Qingxiao, et al.Analysis of electromagnetic force and rotor mechanical strength on flux-concentrating transverse flux PM machine with passive rotor[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 10-16. [11] 董砚, 颜冬, 荆锴, 等. 磁障渐变同步磁阻电机低转矩脉动转子优化设计[J]. 电工技术学报, 2017, 32(19): 21-31. Dong Yan, Yan Dong, Jing Kai, et al.Rotor optimal design of the gradient flux-barrier for torque ripple reduction in synchronous reluctance motor[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 21-31. [12] 张江鹏. 具有高过载能力永磁同步电机的研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. [13] 宋俊. 短时高过载永磁电机热可靠性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [14] 李立毅, 张江鹏, 赵国平, 等. 考虑极限热负荷下高过载永磁同步电机的研究[J]. 中国电机工程学报, 2016, 36(3): 845-852. Li Liyi, Zhang Jiangpeng, Zhao Guoping, et al.Research on the high overload permanent magnet synchronous motor considering extreme thermal load[J]. Proceedings of the CSEE, 2016, 36(3): 845-852. [15] 孙曌续. 永磁同步电机高温环境下性能及温升特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [16] Huang Xuzhen, Liu Jiaxi, Zhang Chengming, et al.Calculation and experimental study on temperature rise of a high overload tubular permanent magnet linear motor[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1182-1187. [17] 陈益广, 郑军, 魏娟, 等. 舵机用永磁同步电机的设计与温度场分析[J]. 电工技术学报, 2015, 30(14): 94-99. Chen Yiguang, Zheng Jun, Wei Juan, et al.Design of PMSM for actuator and its temperature field analysis[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 94-99. [18] Chen Xiao, Wang Jiabin, Griffo A.A high-fidelity and computationally efficient electrothermally coupled model for interior permanent-magnet machines in electric vehicle traction applications[J]. IEEE Transactions on Transportation Electrification, 2015, 1(5): 336-347. [19] Ahmed F, Kar N C.Analysis of end-winding thermal effects in a totally enclosed fan-cooled induction motor with a die cast copper rotor[J]. IEEE Transactions on Industry Application, 2017, 53(3): 3098-3109. [20] 汤蕴缪. 电机内的电磁场[M]. 2版. 北京:科学出版社, 1998: 345-367. [21] 陈丽香, 解志霖, 王雪斌. 低速大转矩永磁电机的转子散热问题[J]. 电工技术学报, 2017, 32(7): 40-48. Chen Lixiang, Xie Zhilin, Wang Xuebin.The rotor heat dissipation problem of low speed and high torque permanent magnet motor[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 40-48. [22] Huang Xuzhen, Tan Qiang, Li Liyi, et al.Winding temperature field model considering void ratio and temperature rise of a permanent-magnet synchronous motor with high current density[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2168-2177. [23] 朱高嘉, 朱英浩, 朱建国. 永磁电机温度场的改进有限公式迭代算法[J]. 电工技术学报, 2017, 32(16): 136-144. Zhu Gaojia, Zhu Yinghao, Zhu Jianguo, et al.A modified thermal rewind model of permanent magnet motors based on finite formulation method[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 136-144.