Radial Thermal Circuit Model and Parameter Calculation Method for High Voltage Overhead Transmission Line
Ying Zhanfeng1, Du Zhijia2, Feng Kai1, Liu Yafang1, Wu Junji1
1. School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China; 2. State Grid Nanjing Power Supply Company Nanjing 210094 China
Abstract:To calculate current-radial temperature of high voltage overhead transmission line, a radial temperature thermal circuit model in the form of state equation was developed with the thermal equilibrium principle. A calculation method was proposed to estimate the heat flux and heat capacity of conductor on the transmission line radial annular cross section. With linear regression method, the radial thermal resistance of thermal circuit model was obtained by grey box identification. To validate the reliability of model, an experiment was designed to measure the radial temperatures of transmission line with various current. A simulation with thermal circuit model was performed to calculate the radial temperature by Simulink. Comparing the experiment and simulation, the average relative error of proposed thermal circuit model is less than 3.16% in natural convection. The results indicate that the proposed thermal circuit model has potential application applied in radial temperature gradient calculation of transmission line with various current.
应展烽, 杜志佳, 冯凯, 柳亚芳, 吴军基. 高压架空导线径向热路模型及其参数计算方法[J]. 电工技术学报, 2016, 31(4): 13-21.
Ying Zhanfeng, Du Zhijia, Feng Kai, Liu Yafang, Wu Junji. Radial Thermal Circuit Model and Parameter Calculation Method for High Voltage Overhead Transmission Line. Transactions of China Electrotechnical Society, 2016, 31(4): 13-21.
[1] IEEE Std 738—2006, IEEE standard for calculating the current-temperature of bare overhead conductors [S]. [2] 黄新波, 孙钦东, 张冠军, 等. 输电线路实时增容技术的理论计算与应用研究[J]. 高电压技术, 2008, 34(6): 1138-1144. Huang Xinbo, Sun Qindong, Zhang Guanjun, et al. Theoretical calculation and capacity-increase application study on real-time of transmission lines[J]. High Voltage Engineering, 2008, 34(6): 1138-1144. [3] 马晓明, 范春菊, 胡天强, 等. 基于热稳定约束的架空导线增容计算研究[J]. 电力系统保护与控制, 2012, 40(14): 86-91. Ma Xiaoming, Fan Chunju, Hu Tianqiang, et al. Calculation of current carrying capacity of overhead transmission line based on thermal stability constraint [J]. Power System Protection and Control, 2012, 40(14): 86-91. [4] Mehran K, Charles H P. Sag and tension calculations for overhead transmission lines at high temperatures— modified ruling span method[J]. IEEE Transactions on Power Delivery, 2000, 15(2): 777-783. [5] 董晓明, 梁军, 韩学山, 等. 计及输电线路温度变化的连续潮流模型与计算[J]. 电力系统保护与控制, 2012, 40(23): 36-41. Dong Xiaoming, Liang Jun, Han Xueshan, et al. Model and calculation of continuation power flow considering change of transmission line temperature [J]. Power System Protection and Control, 2012, 40(23): 36-41. [6] Banakar H, Alguacil N, Galiana F D.Electrothermal coordination. part I: theory and implementation scheme[J].IEEE Transactions on Power Systems, 2005, 20(2): 798-805. [7] Shelley L C, William Z B, Michael L F. High- temperature sag model for overhead conductors[J]. IEEE Transactions on Power Delivery, 2003, 18(1): 183-188. [8] Black W Z, Collins S S. Theoretical model for tem- purature gradients within bare overhead conductors[J]. IEEE Transactions on Power Delivery, 1988, 3(2): 707-715. [9] Fan Songhai, Jiang Xingliang, Shu Lichun, et, al. DC ice-melting model for elliptic glaze iced conductor[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2697-2703. [10] Morgan V T. The radial temperature distribution and effective radial thermal conductivity in bare solid and stranded conductors[J]. IEEE Transactions on Power Delivery, 1990, 3(5): 1443-1452. [11] Minambres J F, Barandiaran J J, Alvarez Isasi R, et al. Radial temperature distribution in ACSR conductors applying finite elements[J]. IEEE Transcations on Power Delivery, 1999, 14(2): 472-480. [12] Shenkman A L, Chertkov M. Experimental method for synthesis of generalized thermal circuit of polyphase induction motors[J]. IEEE Transactions on Energy Conversion, 2000, 15(3): 264-268. [13] Kun Z, Ming C C. Thermal circuit for SOI MOSFET structure accounting for nonisothermal effects[J]. IEEE Transactions on Electronic Devices, 2010, 57(11): 2838-2847. [14] Zoran R, Kurt F. A new method for the calculation of the hot-spot temperature in power transformers with ONAN cooling[J]. IEEE Transactions on Power Deli- very, 2003, 18(4): 1284-1292. [15] 景巍, 谭国俊, 叶宗彬. 大功率三电平变频器损耗计算及散热分析[J]. 电工技术学报, 2011, 26(2): 134-140. Jing Wei, Tan Guojun, Ye Zongbin. Losses calculation and heat dissipation analysis of high-power three- level converters[J]. Transactions of China Electrotech- nical Society, 2011, 26(2): 134-140. [16] 白保东, 陈德志, 王鑫博. 逆变器IGBT损耗计算及冷却装置设计[J]. 电工技术学报, 2013, 28(8): 97-106. Bai Baodong, Chen Dezhi, Wang Xinbo. Loss calcula- tion of inverter IGBT and design of cooling device[J]. Transactions of China Electrotechnical Society, 2013, 28(8): 97-106. [17] 胡建辉, 李锦庚, 邹继斌, 等. 变频器中的IGBT模块损耗计算及散热系统设计[J]. 电工技术学报, 2009, 24(3): 159-163. Hu Jianhui, Li Jingeng, Zou Jibin, et al. Losses calculation of IGBT module and heat dissipation system design of inverters[J]. Transactions of China Electrotechnical Society, 2009, 24(3): 159-163. [18] 刘刚, 阮班义, 张鸣. 架空导线动态增容的热路法暂态模型[J]. 电力系统自动化, 2012, 36(16): 58-63. Liu Gang, Ruan Banyi, Zhang Ming. A transient model for overhead transmission line dynamic rating based on thermal circuit method[J]. Automation of Electric Power Systems, 2012, 36(16): 58-63. [19] 刘刚, 阮班义, 林杰, 等. 架空导线动态增容的热路法稳态模型[J]. 高电压技术, 2013, 39(5): 1107- 1113. Liu Gang, Ruan Banyi, Lin Jie, et al. Steady-state model of thermal circuit method for dynamic overhead lines rating[J]. High Voltage Engineering, 2013, 39(5): 1107-1113. [20] 林杰, 刘刚, 张海鹏, 等. 架空线路并沟线夹温度分布研究[J]. 电力系统保护与控制, 2013, 41(24): 88-94. Lin Jie, Liu Gang, Zhang Haipeng, et al. Research of temperature distribution of overhead lines parallel groove clamp[J]. Power System Protection and Control, 2013, 41(24): 88-94. [21] 陶文铨. 传热学[M]. 西安: 西北工业大学出版社, 2006. [22] Emmanuel I K, Panagiotis T T, John S K, et al. A wildfire model for the estimation of the temperature rise of an overhead line conductor[J]. IEEE Transactions on Power Delivery, 2010, 25(2): 1077-1082. [23] 李秀中. 电线电缆常用数据速查手册[M]. 北京: 中国电力出版社, 2010. [24] Elias M. Local linear regression estimation under long-range dependence: strong consistency and rates [J]. IEEE Transactions on Information Theory, 2001, 47(7): 2863-2874. [25] Franck D, Jean C N. Formulating robust linear regre- ssion estimation as a one-class LDA criterion: discri- minative hat matrix[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(2): 262- 273. [26] Chen S L, Black W Z, Loard H W. High-temperature ampacity model for overhead conductors[J]. IEEE Transactions on Power Delivery, 2002, 17(4): 1136- 1141. [27] Hall J F, Deb A K. Wind tunnel studies of trans- mission line conductor temperature[J]. IEEE Transac- tions on Power Delivery, 1988, 3(2): 801-812.