Modeling Method of OPLC Thermal Circuit Model Based on Superposition Principle
Wang He1, 2, Li Xingbao1, 2, Lu Junhai3, Luo Huanhuan3, Zhou Guiping3
1. School of Electrical Engineering Northeast Electric Power University Jilin 132012 China; 2. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China;; 3. Liaoning Electric Power Co. Ltd Shenyang 110006 China
Abstract:Optical fiber composite low-voltage cable is an organic combination of optical fiber and power cable. It plays an important role in the development of energy internet and intelligrid. The change of temperature has a great influence on the operating state of OPLC and the accuracy of parameter measurement. It is of great practical significance to establish an OPLC thermal circuit model. In view of the wide variety and different structure of OPLC, an OPLC modeling method based on superposition principle is proposed in this paper. First, the asymmetric OPLC is modeled as several symmetric sub models, and the superposition principle is applied to superimpose each model. On this basis, particle swarm optimization algorithm is used to realize the identification of model parameters, improve the precision of parameters, get the accurate thermal circuit model, and achieve the accurate calculation of OPLC temperature at different locations. In this paper, a four cable core OPLC is taken as an example to establish the OPLC thermal circuit model. The effectiveness of the method is proved by the simulation analysis and experimental verification.
王鹤, 李兴宝, 路俊海, 罗桓桓, 周桂平. 基于叠加原理的光纤复合低压电缆热路模型建模[J]. 电工技术学报, 2019, 34(7): 1381-1391.
Wang He, Li Xingbao, Lu Junhai, Luo Huanhuan, Zhou Guiping. Modeling Method of OPLC Thermal Circuit Model Based on Superposition Principle. Transactions of China Electrotechnical Society, 2019, 34(7): 1381-1391.
[1] 范宏, 高亮, 周利俊, 等. 智能电网的电力光纤入户技术及其应用[J]. 电力自动化设备, 2013, 33(7): 149-154. Fan Hong, Gao Liang, Zhou Lijun, et al.Application of PFTTH technology in smart grid[J]. Electric Power Automation Equipment, 2013, 33(7): 149-154. [2] Shah M A, Chen Y, Ashfaq A, et al.Temperature field distribution of optical fiber composite low-voltage cable[C]//International Symposium on Electrical Insulating Materials, Toyohashi, 2017: 295-298. [3] 冯凯, 应展锋, 张旭东, 等. 基于内点法参数辨识的架空导线径向热路模型[J]. 高电压技术, 2015, 41(7): 2321-2326. Feng Kai, Ying Zhanfeng, Zhang Xudong, et al.Radial thermal circuit model of overhead conductors based on parameter identification with interior point method[J]. High Voltage Engineering, 2015, 41(7): 2321-2326. [4] 应展烽, 冯凯, 杜志佳, 等. 高压架空导线电流与轴向温度关系计算的热路模型[J]. 中国电机工程学报, 2015, 35(11): 2887-2895. Ying Zhanfeng, Feng Kai, Du Zhijia, et al.Thermal circuit modeling of the relationship between current and axial temperature for high voltage overhead conductor[J]. Proceedings of the CSEE, 2015, 35(11): 2887-2895. [5] Bragatto T, Cresta M, Gatta F M, et al.Underground MV power cable joints: a nonlinear thermal circuit model and its experimental validation[J]. Electric Power Systems Research, 2017, 149(4): 190-197. [6] 应展烽, 杜志佳, 冯凯, 等. 高压架空导线径向热路模型及其参数计算方法[J]. 电工技术学报, 2016, 31(4): 13-21. Ying Zhanfeng, Du Zhijia, Feng Kai, et al.Radial thermal circuit model and parameter calculation method for high voltage overhead transmission line[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 13-21. [7] Zhu Sa, Cheng Ming, Cai Xiuhua.Direct coupling method for coupled field-circuit thermal model of electrical machines[J]. IEEE Transactions on Energy Conversion, 2018, 33(2): 473-482. [8] 曾强, 肖继学, 廖旋, 等. 电缆热路模型特征参数基于LMS的实验分析方法研究[J]. 太阳能学报, 2017, 38(6): 1606-1611. Zeng Qiang, Xiao Jixue, Liao Xuan, et al.Exper- mental analysis method of characteristic parameters for cable thermal circuit model based on LMS[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1606-1611. [9] 胥玉萍, 肖继学, 董圣友, 等. 基于递推回归法的电缆热路模型特征参数实验分析方法[J]. 太阳能学报, 2016, 37(6): 1446-1452. Xu Yuping, Xiao Jixue, Dong Shengyou, et al.Experimental analysis of charateristic parameter of cable thermal circuit model based on recursive regression[J]. Acta Energiae Solaris Sinica, 2016, 37(6): 1446-1452. [10] 李永, 茅靳丰, 耿世彬, 等. 基于渗流有限长线热源地埋管管群换热分析与优化[J]. 太阳能学报, 2015, 36(6): 1287-1293. Li Yong, Mao Jinfeng, Geng Shibin, et al.Analysis and optimization of multi-boreholes based on moving finite line source model[J]. Acta Energiae Solaris Sinica, 2015, 36(6): 1287-1293. [11] 余尚帆, 南晓红, 梁凯. 空气源热泵水箱温度的解析解及其实验验证[J], 太阳能学报, 2016, 37(8): 2026-2031. Yu Shangfan, Nan Xiaohong, Liang Kai.Analytical solution and ITS experimental validation of water temperature of air-source heat pump[J]. Acta Energiae Solaris Sinica, 2016, 37(8): 2026-2031. [12] 吕安强, 寇欣, 尹成群, 等. 三芯海底电缆中复合光纤与导体温度关系建模[J]. 电工技术学报, 2016, 31(18): 59-65. Lü Anqiang, Kou Xin, Yin Chengqun, et al.Modeling of temperature relation between optical fiber and conductor in 3-core submarine power cable[J]. Transactions of China Electrotechnical Society, 2016, 31(18): 59-65. [13] 张青山, 段建东, 叶兵, 等. 基于电接触元件暂态热路建模的接触电阻测量研究[J]. 电力系统保护与控制, 2014, 42(15): 27-33. Zhang Qingshan, Duan Jiandong, Ye Bing, et al.Research of measuring contact resistance based on the electrical contact transient thermal circuit model[J]. Power System Protection and Control, 2014, 42(15): 27-33. [14] 梁培鑫, 裴宇龙, 甘磊, 等. 高功率密度轮毂电机温度场建模研究[J]. 电工技术学报, 2015, 30(14): 170-176. Liang Peixin, Fei Yulong, Gan Lei, et al.Research on temperature field modeling of high power density in-wheel motor[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 170-176. [15] 蒋兴良, 孟志高, 张志劲, 等. OPGW临界融冰电流及其影响因素[J]. 电工技术学报, 2016, 31(9): 174-180. Jiang Xingliang, Meng Zhigao, Zhang Zhijin, et al.Critical ice-melting current of ice-covered OPGW and its impacting factors[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 174-180. [16] Antoun C A, Würsch C, Köchli C, et al.Validity tests of superposition principle based on forward model for electromagnetic induction scattering[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4. [17] Hu Xiangdong, Yu Jinzhu, Ren Hui, et al.Analytical solution to steady-state temperature field for straight-row-piped freezing based on superposition of thermal potential[J]. Applied Thermal Engineering, 2017, 111: 223-231. [18] Wojciechowski R M.Analysis and optimisation of an axial flux permanent magnet coreless motor based on the field model using the superposition principle and genetic algorithm[J]. Archives of Electrical Engineering, 2016, 65(3): 601-611. [19] Zhang Yucun, Fu Xianbin, Zhang Fuli.Temperature field detection model based on the dimensional change during the thermal forging process[J]. Applied Thermal Engineering, 2015, 81: 168-176. [20] 万萌, 应展烽, 张旭东, 等. 功率器件集总参数热路模型及其参数提取研究[J]. 电工技术学报, 2015, 30(21): 31-38. Wan Meng, Ying Zhanfeng, Zhang Xudong, et al.Research on the lumped parameter thermal circuit model and the parameter extraction method of power devices[J]. Transactions of China Electrotechnical Society, 2015, 30(21): 31-38. [21] Al-Saud M S. Particle swarm optimization of power cable performance in complex surroundings[J]. IET Generation Transmission & Distribution, 2018, 12(10): 2452-2461. [22] Das A K, Chatterjee S.Finite element method-based modelling of flow rate and temperature distribution in an oil-filled disc-type winding transformer using COMSOL multiphysics[J]. IET Electric Power Applications, 2017, 11(4): 664-673. [23] 张磊, 郑新龙, 俞恩科, 等. 铠装回路串联电阻对110kV海底电缆热效应影响的试验研究[J]. 电力系统保护与控制, 2014, 42(6): 58-62. Zhang Lei, Zheng Xinlong, Yu Enke, et al.Experimental research on the impact of armored circuit with series resistance on thermal effect of 110 kV submarine cable[J]. Power System Protection and Control, 2014, 42(6): 58-62. [24] Yang Lin, Qiu Weihao, Huang Jichao, et al.Comparison of conductor-temperature calculations based on different radial-position-temperature detections for high- voltage power cable[J]. Energies, 2018, 11(1): 117-133. [25] 王晓远, 高鹏. 等效热网络法和有限元法在轮毂电机温度场计算中的应用[J]. 电工技术学报, 2016, 3(16): 26-33. Wang Xiaoyuan, Gao Peng.Application of equivalent thermal network method and finite element method in temperature calculation of in-wheel motor[J]. Transactions of China Electrotechnical Society, 2016. 31(16): 26-33.