Abstract:With the gas insulated switchgear (GIS) equipment increasingly and widely used in each voltage levels, insulation fault of the GIS equipment will seriously endanger the safe operation of power system. The condition monitoring and fault diagnosis of GIS is an effective method to reduce failure rate and operational cost. This paper reviews the research status of SF6 insulation equipment fault diagnosis method and technology based on decomposed components analysis which is a research hotspot in the world, to promote the theory and technical progress of the field. On the basis of the analysis of gas-insulated equipment fault statistics at home and abroad, common insulation failure and its causes were introduced firstly. Then, from the point of SF6 decomposition process and mechanism, the fault diagnosis mechanism based on SF6 decomposed components was analyzed and SF6 fault decomposition characteristic products were emphatically commented. What’s more, research progress of fault diagnosis that regards decompose component ratio as characteristic quantity was summarized. Finally, combining with current research status and unsolved difficult problems, this paper points out the research points and development tendency of SF6 insulated equipment fault diagnosis method and technology based on decomposition component analysis.
唐炬, 杨东, 曾福平, 张晓星. 基于分解组分分析的SF6设备绝缘故障诊断方法与技术的研究现状[J]. 电工技术学报, 2016, 31(20): 41-54.
Tang Ju, Yang Dong, Zeng Fuping, Zhang Xiaoxing. Research Status of SF6 Insulation Equipment Fault Diagnosis Method and Technology Based on Decomposed Components Analysis. Transactions of China Electrotechnical Society, 2016, 31(20): 41-54.
[1] 林涛, 韩冬, 钟海峰, 等. 工频交流电晕放电下SF 6 气体分解物形成的影响因素[J]. 电工技术学报, 2014, 29(2): 219-225. Lin Tao, Han Dong, Zhong Haifeng, et al. Influence factors of formation of decomposition by-products of SF 6 in 50Hz AC corona discharge[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 219- 225. [2] 颜湘莲, 王承玉, 季严松, 等. 气体绝缘设备中SF 6 气体分解产物与设备故障关系的建模[J]. 电工技术学报, 2015, 30(22): 231-238. Yan Xianglian, Wang Chengyu, Ji Yansong, et al. Modeling of the relation between SF 6 decomposition products and interior faults in gas insulated equipment[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 231-238. [3] Fu Y, Rong M, Yang K, et al. Calculated rate constants of the chemical reactions involving the main byproducts SO 2 F, SOF 2 , SO 2 F 2 of SF 6 decomposition in power equipment[J]. Journal of Physics D: Applied Physics, 2016, 49(15): 155502. [4] 张晓星, 姚尧, 唐炬, 等. SF 6 放电分解气体组分分析的现状和发展[J]. 高电压技术, 2008, 34(4): 664-669. Zhang Xiaoxing, Yao Yao, Tang Ju, et al. Actuality and perspective of proximate analysis of SF 6 decomposed products under partial discharge[J]. High Voltage Engineering, 2008, 34(4): 664-669. [5] Korendo Z, Florkowski M. Thermography based diagnostics of power equipment[J]. Power Engineering Journal, 2001, 15(1): 33-42. [6] 曾福平. SF 6 气体绝缘介质局部过热分解特性及微水影响机制研究[D]. 重庆: 重庆大学, 2014. [7] 张晓星, 姚尧, 唐炬, 等. 导电微粒局部放电下SF 6 分解组分色谱信号的曲线拟合分峰[J]. 电工技术学报, 2010, 25(7): 179-185. Zhang Xiaoxing, Yao Yao, Tang Ju, et al. Separating overlapped chromatogram signals of SF 6 decom- posed products under PD of conductive particles based on curve-fitting[J]. Transactions of China Elec- trotechnical Society, 2010, 25(7): 179-185. [8] 刘帆. 局部放电下六氟化硫分解特性与放电类型辨识及影响因素校正[D]. 重庆: 重庆大学, 2013. [9] Tang J, Liu F, Zhang X, et al. Partial discharge recognition based on SF 6 decomposition products and support vector machine[J]. Iet Science Measurement Technology, 2012, 6(4): 198-204. [10] 国家电网公司部门文件(生变电〔2008〕86号), 2008. [11] 唐炬. 组合电器局放在线监测外置传感器和复小波抑制干扰的研究[D]. 重庆: 重庆大学, 2004. [12] Tang J, Liu F, Zhang X, et al. Partial discharge recognition through an analysis of SF 6 decom- position products. Part 1: decomposition characteri- stics of SF 6 under four different partial discharges[J]. IEEE Transactions on Dielectrics & Electrical Insu- lation, 2012, 19(1): 29-36. [13] 梁曦东. 高电压工程[M]. 北京: 清华大学出版社, 2003. [14] Tang J, Pan J, Zhang X, et al. Correlation analysis between SF 6 decomposed components and charge magnitude of partial discharges initiated by free metal particles[J]. Iet Science Measurement & Tech- nology, 2013, 8(4): 170-177. [15] Kumar R, Gorayan R S, Singh B P. Movement of free particle in a 3-phase gas-insulated system[C]//The 12th International Symposium on High Voltage Engineering, Bangalore, India, 2001: 449-452. [16] Prakash K S, Srivastava K D, Morcos M M. Movement of particles in compressed SF 6 GIS with dielectric coated enclosure[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1997, 4(3): 344- 347. [17] 孟庆红. 不同绝缘缺陷局部放电下SF 6 分解特性与特征组分检测研究[D]. 重庆: 重庆大学, 2010. [18] Dong Y, Tang J, Zeng F, et al. Features extraction and mechanism analysis of partial discharge development under protrusion defect[J]. Journal of Electrical Engineering & Technology, 2015, 10(1): 344-354. [19] Li L, Tang J, Liu Y. Partial discharge recognition in gas insulated switchgear based on multi-information fusion[J]. IEEE Transactions on Dielectrics & Elec- trical Insulation, 2015, 22(2): 1080-1087. [20] 李军浩, 车斌, 林敏, 等. 振荡型雷电冲击电压下SF 6 气体中悬浮电位缺陷的局部放电特性研究[J]. 绝缘材料, 2014(4): 62-65. Li Junhao, Che Bin, Lin Min, et al. Partial discharge characteristics of floating potential defect in SF 6 gas under oscillating lightning impulse voltage[J]. Insulating Materials, 2014(4): 62-65. [21] 杨韧, 吴水锋, 薛军, 等. SF 6 断路器内部悬浮电位放电产生的分解产物分析[J]. 高压电器, 2013, 49(6): 17-21. Yang Ren, Wu Shuifeng, Xue Jun, et al. Analysis of decomposition products due to floating potential discharge in SF 6 circuit breaker[J]. High Voltage Apparatus, 2013, 49(6): 17-21. [22] 唐炬, 黄秀娟, 谢颜斌, 等. SF 6 气体过热性分解模拟实验装置的研制[J]. 高电压技术, 2014, 40(11): 3388-3395. Tang Ju, Huang Xiujuan, Xie Yanbin, et al. Design and establishment of experimental simulation system concerning SF 6 thermal decomposition[J]. High Voltage Engineering, 2014, 40(11): 3388-3395. [23] 王涛云, 马宏忠, 崔杨柳, 等. 基于可拓分析和熵值法的GIS状态评估[J]. 电力系统保护与控制, 2016, 44(8): 115-120. Wang Taoyun, Ma Hongzhong, Cui Yangliu, et al. Condition evaluation of gas insulated switchgear based on extension analysis and entropy method[J]. Power System Protection and Control, 2016, 44(8): 115-120. [24] Zeng F, Tang J, Zhang X, et al. Study on the influence mechanism of trace H 2 O on SF 6 thermal decomposition characteristic components[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2): 766-774. [25] Zeng F, Tang J, Fan Q, et al. Decomposition characteristics of SF 6 under thermal fault for temperatures below 400℃[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(3): 995-1004. [26] 程林, 唐炬, 黄秀娟, 等. SF 6 局部过热状态下涉及有机绝缘材料的分解产物生成特性[J]. 高电压技术, 2015, 41(2): 453-460. Cheng Lin, Tang Ju, Huang Xiujuan, et al. SF 6 partial overheating decomposition characteristics with organic insulating materials[J]. High Voltage Engin- eering, 2015, 41(2): 453-460. [27] 汲胜昌, 钟理鹏, 刘凯, 等. SF 6 放电分解组分分析及其应用的研究现状与发展[J]. 中国电机工程学报, 2015, 35(9): 2318-2332. Ji Shengchang, Zhong Lipeng, Liu Kai, et al. Research status and development of SF 6 decom- position components analysis under discharge and its application[J]. Proceedings of the CSEE, 2015, 35(9): 2318-2332. [28] Van Brunt R J, Herron J T. Fundamental processes of SF 6 decomposition and oxidation in glow and corona discharges[J]. IEEE Transactions on Electrical Insulation, 1990, 25(1): 75-94. [29] Van Brunt R J, Herron J T. Fundamental processes of SF 6 decomposition and oxidation in glow and corona discharges[J]. IEEE Transactions on Electrical Insulation, 1990, 25(1): 75-94. [30] Zeng F, Tang J, Sun H, et al. Quantitative analysis of the influence of regularity of SF 6 decomposition characteristics with trace O 2 under partial discharge[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(4): 1462-1470. [31] Tang J, Zeng F, Zhang X, et al. Relationship between decomposition gas ratios and partial discharge energy in GIS, and the influence of residual water and oxygen[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(3): 1226-1234. [32] IEC 60376—2005 Specification of technical grade sulfur hexafluoride (SF 6 ) for use in electrical equipment[S]. 2005. [33] IEC 60480—2004 Guidelines for the checking and treatment of sulfur hexafluoride (SF 6 ) taken from electrical equipment and specification for its re-use[S]. 2004. [34] 齐波, 李成榕, 骆立实, 等. GIS中局部放电与气体分解产物关系的试验[J]. 高电压技术, 2010, 36(4): 957-963. Qi Bo, Li Chengrong, Luo Lishi, et al. Experiment on the correlation between partial discharge and gas decomposition products in GIS[J]. High Voltage Engineering, 2010, 36(4): 957-963. [35] Beyer C, Jenett H, Klockow D. Influence of reactive SF x gases on electrode surfaces after electrical discharges under SF 6 atmosphere[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2000, 7(2): 234-240. [36] 周永言, 乔胜亚, 李丽, 等. GIS中S 2 OF 10 作为局部放电特征气体的有效性分析[J]. 中国电机工程学报, 2016, 36(3): 871-878. Zhou Yongyan, Qiao Shengya, Li Li, et al. Validity analysis of S 2 OF 10 as a target gas of partial discharge in GIS[J]. Proceedings of the CSEE, 2016, 36(3): 871-878. [37] 周文俊, 乔胜亚, 李丽, 等. GIS中盆式绝缘子沿面放电的新特征气体CS 2 [J]. 高电压技术, 2015, 41(3): 848-856. Zhou Wenjun, Qiao Shengya, Li Li, et al. Creeping discharge monitoring of epoxy spacers in GIS using a new target gas CS 2 [J]. High Voltage Engineering, 2015, 41(3): 848-856. [38] Chen C L, Chantry P J. Photo-enhanced dissociative electron attachment in SF 6 and its isotopic selecti- vity[J]. Journal of Chemical Physics, 1979, 71(10): 3897-3907. [39] Tsang W, Herron J T. Kinetics and thermodynamics of the reaction SF 6 SF 5 +F[J]. Journal of Chemical Physics, 1992, 96(6): 4272-4282. [40] Van Brunt R J, Herron J T. Plasma chemical-model for decomposition of SF 6 in a negative glow corona discharge[J]. Physica Scripta, 1994(T53): 9-29. [41] Tang J, Liu F, Zhang X, et al. Characteristics of the concentration ratio of SO 2 F 2 to SOF 2 as the decom- position products of SF 6 under corona discharge[J]. IEEE Transactions on Plasma Science, 2012, 40(1): 56-62. [42] Hirooka K, Kuwahara H, Noshiro M, et al. Decom- position products of SF 6 gas by high-current arc and their reaction mechanism[J]. Electrical Engineering in Japan, 1975, 95(6): 14-19. [43] Boudene C, Cluet J L, Keib G, et al. Identification and study of some properties of compounds resulting from the decomposition of SF 6 under the effect of electrical arc-ing in circuit-breakers[J]. Revue Generale Electricite, 1974(special number): 45-78. [44] Becher W, Massonne J. Contribution to the study of the decomposition of SF 6 in electric arcs and sparks[J]. ETZ-A, 1970, 91(11): 605. [45] Belmadani B, Casanovas J, Casanovas A M. SF 6 decomposition under power arcs-chemical aspects[J]. IEEE Transactions on Electrical Insulation, 1991, 26(6): 1177-1189. [46] Chu Y. SF 6 Decomposition in gas-insulated equipment[J]. IEEE Trarnsactions on Electrical Insulatiorn, 1986(5): 693-725. [47] Gleizes A, Casanovas A M, Coll I. Ablation in SF 6 circuit-breaker arcs: plasma properties and by- products formation[J]. Gaseous Dielectrics Ⅸ, 2001: 393-402. [48] Sauers I, Ellis H W, Christophorou L G. Neutral decomposition products in spark breakdown of SF 6 [J]. IEEE Transactions on Electrical Insulation, 1986(2): 111-120. [49] Manion J P, Philosophos J A, Robinson M B. Arc stability of electronegative gases[J]. IEEE Transa- ctions on Electrical Insulation, 1967(1): 1-10. [50] Pradayrol C, Casanovas A M, Hernoune A, et al. Spark decomposition of SF 6 and SF 6 +50% CF 4 mixtures[J]. Journal of Physics D-Applied Physics, 1996, 29(7): 1941-1951. [51] Beyer C, Jenett H, Klockow D. Influence of reactive SF x gases on electrode surfaces after electrical discharges under SF 6 atmosphere[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2000, 7(2): 234-240. [52] 陈俊. 基于气体分析的SF 6 电气设备潜伏性缺陷诊断技术研究及应用[D]. 武汉: 武汉大学, 2014. [53] Sauers I. By-product formation in spark breakdown of SF 6 /O 2 mixtures[J]. Plasma Chemistry and Plasma Processing, 1988, 8(2): 247-262. [54] Sauers I, Mahajan S M. Detection of S 2 F 10 produced by a single-spark discharge in SF 6 [J]. Journal of Applied Physics, 1993, 74(3): 2103-2105. [55] Sauers I, Mahajan S M, Cacheiro R A. Gaseous dielectrics[M]. US: Springer, 1994. [56] Wilkins R L. Thermodynamics of SF 6 and its decomposition and oxidation products[J]. Journal of Chemical Physics, 1969, 51(2): 853-854. [57] Chu F Y, Massey R M. Thermal decomposition of SF 6 and SF 6 -air mixtures in substation environ- ments[J]. Gaseous Dielectrics III, 2013: 410-419. [58] 唐炬, 曾福平, 孙慧娟, 等. 微H 2 O对过热故障下SF 6 分解特性的影响及校正[J]. 中国电机工程学报, 2015, 35(9): 2342-2350. Tang Ju, Zeng Fuping, Sun Huijuan, et al. Influence and correction of trace H 2 O on SF 6 decomposition characteristic under partial over-thermal fault[J]. Proceedings of the CSEE, 2015, 35(9): 2342-2350. [59] 唐炬, 潘建宇, 姚强, 等. SF 6 在故障温度为300~400℃时的分解特性研究[J]. 中国电机工程学报, 2013, 33(31): 202-210. Tang Ju, Pan Jianyu, Yao Qiang, et al. Decom- position characteristic study of SF 6 with fault temperatures between 300~400℃[J]. Proceedings of the CSEE, 2013, 33(31): 202-210. [60] Tang J, Zeng F, Pan J, et al. Correlation analysis between formation process of SF 6 decomposed components and partial discharge qualities[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(3): 864-875. [61] 唐炬, 陈长杰, 刘帆, 等. 局部放电下SF 6 分解组分检测与绝缘缺陷编码识别[J]. 电网技术, 2011, 35(1): 110-116. Tang Ju, Chen Changjie, Liu Fan, et al. Detection of constituents from SF 6 decomposition under partial discharge and recognition of insulation defect coding[J]. Power System Technology, 2011, 35(1): 110-116. [62] Tang J, Liu F, Meng Q, et al. Partial discharge recognition through an analysis of SF 6 Decom- position products part 2: feature extraction and decision tree-based pattern recognition[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2012, 19(19): 37-44. [63] Tang J, Pan J, Yao Q, et al. Feature extraction of SF 6 thermal decomposition characteristics to diagnose overheating fault[J]. Science Measurement & Tech- nology Iet, 2015, 9(6): 751-757. [64] Tang J, Zeng F, Zhang X, et al. Influence regularity of trace O 2 on SF 6 decomposition characteristics and its mathematical amendment under partial dis- charge[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2014, 21(1): 105-115. [65] 唐炬, 曾福平, 梁鑫, 等. 吸附剂对局部放电下SF 6 分解特征组分的吸附研究[J]. 中国电机工程学报, 2014, 34(3): 486-494. Tang Ju, Zeng Fuping, Liang Xin, et al. Study on the influence of adsorbent on SF 6 decomposition characteristics under partial discharge[J]. Pro- ceedings of the CSEE, 2014, 34(3): 486-494. [66] 唐炬, 胡瑶, 姚强, 等. 不同气压下SF 6 的局部放电分解特性[J]. 高电压技术, 2014, 40(8): 2257-2263. Tang Ju, Hu Yao, Yao Qiang, et al. Decomposition characteristics of SF 6 under partial discharge at different gas pressures[J]. High Voltage Engineering, 2014, 40(8): 2257-2263. [67] 唐炬, 曾福平, 孙慧娟, 等. 电极材料对SF 6 局放分解特征组分生成的影响[J]. 高电压技术, 2015, 41(1): 100-105. Tang Ju, Zeng Fuping, Sun Huijuan, et al. Influences of electrode materials on SF 6 decomposition characteristics under partial discharge[J]. High Voltage Engineering, 2015, 41(1): 100-105.