Compact Design of 550 kV Basin-Type Spacer in Gas Insulated Switchgear (Part I) —— Structure Optimization
Wang Chao1, Li Wendong1, Chen Tairan2, Li Wenqiang3, Gong Ruilei3, Zhang Guanjun1
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China; 2. Tai’an Power Supply Company State Grid Shandong Electric Power Company Tai’an 271000 China; 3. Shandong Taikai High Voltage Switchgear Co. Ltd Tai’an 271000 China
Abstract:In the context of guaranteeing good electrical strength of gas insulated metal enclosed switchgear (GIS), to reduce the consumption of SF6 gas and downsize equipment’s volume, compact design of a 550 kV basin-type spacer used in real projects was conducted based on the finite element method and numerical optimization method. In the condition of reducing 10% insulation distance between central conductor and sealed tank, by optimizing basin-type spacer’s profile and thickness at two terminal regions, surface electric field of spacer is well-distributed and local concentrated mechanical stresses at the central conductor or sealed tank are much relieved. Comparing with original insulation system, structure of spacer obtained by structure optimization exhibits significantly improved electrical and mechanical properties. The maximum electric field along the concave and the maximum deformation of spacer could decrease by 25.4% and 29.9%, respectively. Moreover, optimized structure after compact design shows approximately a 15% decrease of SF6 usage and a 6.1% reduction of epoxy composite weight. We believe that the proposed performance improvement strategy for GIS insulation system taking both electrical and mechanical properties into account, thus exhibits good manufacturing feasibility and application potential, which can provide reference for the development of compact and eco-friendly GIS equipment.
[1] 严璋, 朱德恒. 高电压绝缘技术[M]. 北京:中国电力出版社, 2015. [2] Morcos M, Ward S, Anis H, et al.Insulation integrity of GIS/GITL systems and management of particle contamination[J]. IEEE Electrical Insulation Magazine, 2000, 16(5): 25-37. [3] 张亮, 何聪, 李军浩, 等. 振荡雷电冲击电压下气体绝缘组合电器中极不均匀场击穿特性研究[J].电工技术学报, 2020, 35(12): 2672-2680. Zhang Liang, He Cong, Li Junhao, et al.Breakdown characteristics study of non-uniform field in gas insulated switchgear under oscillating lightning impulses[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2672-2680. [4] 肖登明. 环保型绝缘气体的发展前景[J]. 高电压技术, 2016, 42(4): 1035-1046. Xiao Dengming.Development prospect of gas insulation based on environmental protection[J]. High Voltage Engineering, 2016, 42(4): 1035-1046. [5] Kieffel Y, Irwin T, Ponchon P, et al.Green gas to replace SF6 in electrical grids[J]. IEEE Power and Energy Magazine, 2016, 14(2): 32-39. [6] 陈庆国, 邱睿, 林林, 等. 基于密度泛函理论SF6 潜在替代气体筛选[J]. 高电压技术, 2019, 45(4): 1026-1033. Chen Qingguo, Qiu Rui, Lin Lin, et al.Selection of potential substitutes for SF6 based on density functional theory[J]. High Voltage Engineering, 2019, 45(4): 1026-1033. [7] 纽春萍, 矫璐璐, 王小华, 等. 基于多场耦合的环保型GIS热特性分析[J]. 电工技术学报, 2020, 35(17): 3765-3772. Niu Chunping, Jiao Lulu, Wang Xiaohua, et al.Thermal characteristics analysis of environmentally friendly GIS based on multi-field coupling[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3765-3772. [8] Toigo C, Vu-Cong T, Jacquier F, et al.Partial discharge behavior of protrusion on high voltage conductor in GIS/GIL under high voltage direct current: comparison of SF6 and SF6 alternative gases[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(1): 140-147. [9] 郑诚衍. SF6全封闭组合电器发展的新动向——三相共箱[J]. 高压电器, 1982(4): 57-58. [10] 侯国斌, 傅明利, 邓晓峰, 等. GIS温升的多物理场仿真与实验及热通量分布特性[J]. 高电压技术, 2019, 45(7): 2322-2328. Hou Guobin, Fu Mingli, Deng Xiaofeng, et al.Multi-physics coupling simulation and experiment of temperature rise in GIS and heat flux distribution characteristics[J]. High Voltage Engineering, 2019, 45(7): 2322-2328. [11] 张施令, 彭宗仁, 王浩然, 等. 盆式绝缘子多物理场耦合数值计算及结构优化[J]. 高电压技术, 2020, 46(11): 3994-4005. Zhang Shiling, Peng Zongren, Wang Haoran, et al.Numerical calculation and structural optimization of multi-physical field coupling for basin insulator[J]. High Voltage Engineering, 2020, 46(11): 3994-4005. [12] 贾云飞, 高璐, 汲胜昌, 等. 基于有限元仿真和遗传算法的1100kV盆式绝缘子电气、机械性能综合优化[J]. 高电压技术, 2019, 45(12): 3844-3853. Jia Yunfei, Gao Lu, Ji Shengchang, et al.Comprehensive optimization of electrical and mechanical performance of 1100kV basin-type insulator based on genetic algorithm and finite element simulation[J]. High Voltage Engineering, 2019, 45(12): 3844-3853. [13] 曹云东, 刘晓明, 刘冬, 等. 动态神经网络法及在多变量电器优化设计中的研究[J]. 中国电机工程学报, 2006, 26(8): 112-116. Cao Yundong, Liu Xiaoming, Liu Dong, et al.Investigation of a dynamic neural network approach and its application of multivariable optimization to electrical apparatus[J]. Proceedings of the CSEE, 2006, 26(8): 112-116. [14] 王超, 李文栋, 杨雄, 等. 基于几何形状/介电分布综合优化的GIS/GIL 盆式绝缘子电场分布特性调控[J]. 中国电机工程学报, 2020, 40(22): 112-116. Wang Chao, Li Wendong, Yang Xiong, et al.A Comprehensive strategy for electric field regulation of GIS/GIL spacer by using structure and dielectric distribution optimization[J]. Proceedings of the CSEE, 2020, 40(22): 112-116. [15] 黎斌. GIS盆式绝缘子金属外圈及屏蔽内环设计的必要性[J]. 高压电器, 2012, 48(8): 109-113. Li Bin.Necessity of design for the metal outer rings and shielding inner ring of GIS basin-type insulator[J]. High Voltage Apparatus, 2012, 48(8): 109-113. [16] 黎斌. SF6高压电器设计[M]. 北京: 机械工业出版社, 2010. [17] Guo Zihao, Wu Zehua, Wang Haoran, et al.Experimental and numerical study on formation of interface separation and interfacial dielectric strength of GIL insulator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6): 1738-1746. [18] Bramerdorfer G.Multiobjective electric machine optimization for highest reliability demands[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(2): 71-78. [19] 韩平平, 潘薇, 张楠, 等. 基于负荷预测和非支配排序遗传算法的人工相序优化方法[J]. 电力系统自动化, 2020, 44(20): 71-78. Han Pingping, Pan Wei, Zhang Nan, et al.Optimization method for artificial phase sequence based on load forecasting and non-dominated sorting genetic algorithm[J]. Automation of Electric Power System, 2020, 44(20): 71-78. [20] 李祥林, 李金阳, 杨光勇, 等. 电励磁双定子场调制电机的多目标优化设计分析[J]. 电工技术学报, 2020, 35(5): 972-982. Li Xianglin, Li Jinyang, Yang Guangyong, et al.Multi-objective optimization analysis of electric-excitation double-stator field-modulated machine[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 972-982.