Abstract:The medium-voltage insulated high-power medium-frequency transformer (MFT) used in photovoltaic grid-connected systems not only requires a large insulation distance between the high and low voltage side windings, but also needs to be poured with thermal-protective insulating materials inside. However, it can lead to problems such as serious electromagnetic interference and difficult heat dissipation in the MFT. Therefore, this paper proposes an MFT optimal design method that fully considers the core size, winding wire diameter and winding arrangement structure. In this method, the core volume is determined by the area product (AP) method, and then the loss of the MFT is minimized by free variable scanning. Based on the finite element simulation software, it is verified that the optimized design method will also reduce the electromagnetic interference area around the transformer. Finally, a 200kW/30kHz MFT was designed through the optimized design method, and a prototype was made. The comparison between theory and experiment verifies the optimized design method.
[1] 卢斯煜, 周保荣, 饶宏, 等. 高比例光伏发电并网条件下中国远景电源结构探讨[J]. 中国电机工程学报, 2018, 38(增刊1): 39-44. Lu Siyu, Zhou Baorong, Rao Hong, et al.Research of the prospect of China power generation structure with high proportion of photovoltaic generation[J]. Pro-ceedings of the CSEE, 2018, 38(S1): 39-44. [2] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1-14. Ding Ming, Wang Weisheng, Wang Xiuli, et al.A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1-14. [3] Zhu Rongwu, Andresen M, Langwasser M, et al.Smart transformer/large flexible transformer[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(4): 264-274. [4] Bahmani M A, Thiringer T, Rabiei A, et al.Com-parative study of a multi-MW high-power density DC transformer with an optimized high-frequency magnetics in all-DC off shore wind farm[J]. IEEE Transactions on Power Delivery, 2016, 31(2): 857-866. [5] She Xu, Huang A Q, Burgos R.Review of solid-state transformer technologies and their application in power distribution systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(3): 186-198. [6] 高范强, 李子欣, 李耀华, 等. 面向交直流混合配电应用的10kV-3MV·A四端口电力电子变压器[J]. 电工技术学报, 2021, 36(16): 3331-3341. Gao Fanqiang, Li Zixin, Li Yaohua, et al.10kV-3MV·A four-port power electronic transformer for AC-DC hybrid power distribution applications[J]. Transactions of China Electrotechnical Society, 2021, 36(16): 3331-3341. [7] 胡钰杰, 李子欣, 罗龙, 等. 基于串联谐振间接矩阵型电力电子变压器高频电流特性分析及开关频率设计[J]. 电工技术学报, 2022, 37(6): 1442-1454 Hu Yujie, Li Zixin, Luo Long, et al.Characteristic analysis of high-frequency-kink current of series resonant indirect matrix type power electronics transformer and switching frequency design[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1442-1454. [8] 杨景刚, 张珂, 陈武, 等. 大功率中频变压器研究综述[J]. 电源学报, 2020, 18(1): 4-17. Yang Jinggang, Zhang Ke, Chen Wu, et al.Review on researches of high-power medium-frequency trans-former[J]. Journal of Power Supply, 2020, 18(1): 4-17. [9] 王迎迎, 程红. 应用于功率变换器的多绕组高频变压器模型[J]. 电工技术学报, 2021, 36(19): 4140-4147. Wang Yingying, Cheng Hong.Dual multi-winding high-frequency transformer equivalent circuit for power converter applications[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4140-4147. [10] 张航, 李耀华, 高范强, 等. 级联H桥型电力电子变压器隔离级高频电流波动抑制策略[J]. 电力系统自动化, 2020, 44(7): 130-138. Zhang Hang, Li Yaohua, Gao Fanqiang, et al.High-frequency current fluctuation suppression strategy for isolation stage of cascaded H-bridge based power electronic transformer[J]. Automation of Electric Power Systems, 2020, 44(7): 130-138. [11] Zheng Jialin, Zhao Zhengming, Shi Bochen, et al.A discrete state event driven simulation based losses analysis for multi-terminal megawatt power electronic transformer[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(4): 275-284. [12] 赵争菡, 汪友华, 凌跃胜, 等. 大容量高频变压器绕组损耗的计算与分析[J]. 电工技术学报, 2014, 29(5): 261-264, 270. Zhao Zhenghan, Wang Youhua, Ling Yuesheng, et al.Calculation and analysis of loss in high-capacity high-frequency transformers[J]. Transactions of China Elec-trotechnical Society, 2014, 29(5): 261-264, 270. [13] 张重远, 王增超, 张欣, 等. 基于改进矢量匹配法的变压器铁芯频变涡流模型[J]. 高电压技术, 2015, 41(5): 1618-1623. Zhang Zhongyuan, Wang Zengchao, Zhang Xin, et al.Transformer core modeling for frequency dependent eddy current based on modified vector fitting[J]. High Voltage Engineering, 2015, 41(5): 1618-1623. [14] 李子欣, 高范强, 赵聪, 等. 电力电子变压器技术研究综述[J]. 中国电机工程学报, 2018, 38(5): 1274-1289. Li Zixin, Gao Fanqiang, Zhao Cong, et al.Research review of power electronic transformer technolo-gies[J]. Proceedings of the CSEE, 2018, 38(5): 1274-1289. [15] Dowell P L.Effects of eddy currents in transformer windings[J]. Proceedings of the Institution of Electrical Engineers, 1966, 113(8): 1387-1394. [16] Ferreira J A.Improved analytical modeling of con-ductive losses in magnetic components[J]. IEEE Transactions on Power Electronics, 1994, 9(1): 127-131. [17] Agheb E, Høidalen H K.Medium frequency high power transformers, state of art and challenges[C]//2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, 2012: 1-6. [18] 杨东江, 段彬, 丁文龙, 等. 一种带辅助双向开关单元的宽输入电压范围LLC谐振变换器[J]. 电工技术学报, 2020, 35(4): 775-785. Yang Dongjiang, Duan Bin, Ding Wenlong, et al.An improved LLC resonant converter with auxiliary bi-directional switch for wide-input-voltage range applications[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 775-785. [19] 刘瑞欣, 王议锋, 韩富强, 等. 应用于宽输入电压范围的两模式切换型软开关谐振直流变换器[J]. 电工技术学报, 2020, 35(22): 4739-4749. Liu Ruixin, Wang Yifeng, Han Fuqiang, et al.A two-mode soft-switching resonant DC-DC converter for wide input voltage range applications[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4739-4749. [20] 刘硕, 苏建徽, 赖纪东, 等. LLC谐振变换器PO模式增益公式与模式边界条件分析[J]. 电力系统自动化, 2020, 44(6): 164-170. Liu Shuo, Su Jianhui, Lai Jidong, et al.Analysis on gain formula and mode boundary condition for LLC resonant converter in PO mode[J]. Automation of Electric Power Systems, 2020, 44(6): 164-170. [21] Hurley W G, Wölfle W H.Transformers and indu-ctors for power electronics, theory, design and applications[M]. Chichester: John Wiley & Sons, 2013. [22] Yu Xiong, Su Jianhui, Lai Jidong, et al.Analytical optimization of nonsaturated thermally limited high-frequency transformer/inductor design considering discreteness of design variables[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 6231-6250. [23] 曹小鹏, 陈武, 宁光富, 等. 基于多目标遗传算法的大功率高频变压器优化设计[J]. 中国电机工程学报, 2018, 38(5): 1348-1355. Cao Xiaopeng, Chen Wu, Ning Guangfu, et al.Optimization design of high-power high-frequency transformer based on multi-objective genetic algo-rithm[J]. Proceedings of the CSEE, 2018, 38(5): 1348-1355. [24] Leibl M, Ortiz G, Kolar J W.Design and experimental analysis of a medium-frequency transformer for solid-state transformer applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 110-123. [25] Bahmani M A, Thiringer T, Kharezy M.Design metho-dology and optimization of a medium-frequency transformer for high-power DC-DC applications[J]. IEEE Transactions on Industry Applications, 2016, 52(5): 4225-4233. [26] 律方成, 郭云翔, 李鹏. 大功率中频变压器多目标参数优化设计[J]. 高电压技术, 2017, 43(1): 210-217. Lü Fangcheng, Guo Yunxiang, Li Peng.Optimization design for multiple target parameters of high power medium frequency transformer[J]. High Voltage Engineering, 2017, 43(1): 210-217. [27] Venkatachalam K, Sullivan C R, Abdallah T, et al.Accurate prediction of ferrite core loss with non-sinusoidal waveforms using only Steinmetz para-meters[C]//IEEE Workshop on Computers in Power Electronics, Mayaguez, 2002: 36-41. [28] Kazimierczuk M K.High-frequency magnetic com-ponents[M]. Chichester: John Wiley & Sons, 2014: 338-351. [29] Wojda R P, Kazimierczuk M K.Winding resistance of Litz-wire and multi-strand inductors[J]. IET Power Electronics, 2012, 5(2): 257-268. [30] Mogorovic M, Dujic D.Medium frequency trans-former leakage inductance modeling and experimental verification[C]//2017 IEEE Energy Conversion Con-gress and Exposition (ECCE), Cincinnati, 2017: 419-424.