Abstract:Magnetic particle imaging is a tracer imaging technique with high imaging resolution. Aiming at the open scanning problem of the current imaging system, a high-resolution two-dimensional scanning imaging method is realized by a highly sensitive magnetic field-free line. A magnetic field-free line with an open coil structure is designed. The magnetic field-free line is constructed by gradient static magnetic field to determine the position of the tracer, and the uniform alternating magnetic field is used for translation scanning of magnetic field-free line. The coil structure is analyzed in detail. Firstly, the current driving method of the magnetic particle imaging coil system for realizing high resolution is determined. Then the finite element simulation calculation analysis of the open magnetic field-free line scanning method is carried out. Finally, according to the relationship between the driving mode and the range of the translation scanning region, the imaging experiment of the particle quality score model is carried out. The results show that the open coil structure of the magnetic field-free line can realize high resolution imaging of magnetic nanoparticle tracer in the imaging area of 17mm×17mm in a gradient magnetic field of 1.316T/m, the resolution can reach sub-millimeter. It is proved that the magnetic field-free line scanning method is feasible for magnetic particle imaging.
刘洋洋, 杜强, 柯丽, 祖婉妮. 磁性粒子成像线型零磁场设计及性能分析[J]. 电工技术学报, 2020, 35(10): 2088-2097.
Liu Yangyang, Du Qiang, Ke Li, Zu Wanni. Design and Analysis of Magnetic Field-Free Line in Magnetic Particle Imaging. Transactions of China Electrotechnical Society, 2020, 35(10): 2088-2097.
[1] Weizenecker J, Borgert J, Gleich B.A simulation study on the resolution and sensitivity of magnetic particle imaging[J]. Physics in Medicine and Biology, 2007, 52(21): 6363-6374. [2] Gleich B, Weizenecker J.Tomographic imaging using the nonlinear response of magnetic particles[J]. Nature, 2005, 435(7046): 1214-1217. [3] Bulte J W M, Walczak P, Bernard S, et al. Deve- loping cellular MPI: initial experience[C]//Inter- national Workshop on Magnetic Nanoparticles- particle Science, Imaging Technology, Germany, Lübeck, 2010: 201-204. [4] Cetin S, Saritas E U, Unal G.Vessel tractography for magnetic particle imaging angiography[C]//IEEE 5th International Workshop on Magnetic Particle Imaging (IWMPI), Turkey, Istanbul, 2015: 1. [5] Sigovan M, Boussel L, Sulaiman A, et al.Rapid- clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model[J]. Radiology, 2009, 252(2): 401-409. [6] Weizenecker J, Gleich B, Rahmer J, et al.3D real- time in vivo magnetic particle imaging[J]. Physics in Medicine and Biology, 2009, 54(5): 1-10. [7] Weizenecker J, Gleich B, Borgert J.Magnetic particle imaging using a field free line[J]. Journal of Physics D: Applied Physics, 2008, 41(10): 105009. [8] Tobias K, Marlitt E, Sven B, et al.Efficient generation of a magnetic field-free line[J]. Medical Physics, 2010, 37(7): 3538-3540. [9] Knopp T, Erbe M, Sattel T F, et al.Generation of a static magnetic field-free line using two Maxwell coil pairs[J]. Applied Physics Letters, 2010, 97(9): 092505. [10] Knopp T, Biederer S, Sattel T F, et al.2D model- based reconstruction for magnetic particle imaging[J]. Medical physics, 2010, 37(2): 485-491. [11] Knopp T, Rahmer J, Sattel T F, et al.Weighted iterative reconstruction for magnetic particle imaging[J]. Physics in Medicine and Biology, 2010, 55(6): 1577-1589. [12] Enpuku K, Miyazaki T, Morishita M, et al.Narrowband magnetic nanoparticle imaging using cooled pickup coil and gradient field[J]. Japanese Journal of Applied Physics, 2015, 54(5): 057002. [13] Morishige T, Mihaya T, Bai S, et al.Highly sensitive magnetic nanoparticle imaging using cooled-Cu/ HTS-superconductor pickup coils[J]. IEEE Transa- ctions on Applied Superconductivity, 2014, 24(4): 1-5. [14] Sasayama T, Tsujita Y, Morishita M, et al.Three- dimensional magnetic nanoparticle imaging using small field gradient and multiple pickup coils[J]. Journal of Magnetism and Magnetic Materials, 2016, 427(1): 144-150. [15] Yuya T, Masahiro M, Teruyoshi S, et al.Three- dimensional magnetic particle imaging utilizing multiple pickup coils and field-free line[C]//16th International Superconductive Electronics Conference (IEICE), Naples, Italy, 2017: 1-3. [16] Rahmer J, Weizenecker J, Gleich B, et al.Signal encoding in magnetic particle imaging: properties of the system function[J]. BMC Medical Imaging, 2009, 9(1): 1-21. [17] Den Dekker A J, Van den Bos A. Resolution: a survey[J]. Journal of the Optical Society of America, 1997, 14(3): 547-557. [18] Houston W V.A compound interferometer for fine structure work[J]. Physical Review, 1927, 29(3): 478-484. [19] Knopp T, Buzug T M.Magnetic particle imaging: an introduction to imaging principles and scanner instrumentation[M]. New York: Springer, 2012. [20] Chikazumi S.Physics of magnetism[M]. New York: John Wiley & Sons, 1964. [21] Kaethner C, Ahlborg M, Grafe K, et al.Asymmetric scanner design for interventional scenarios in magnetic particle imaging[J]. IEEE Transactions on Magnetics, 2015, 51(2): 1-4. [22] 汪泉弟, 康健炜, 王赢聪, 等. 磁谐振无线电能传输系统空间磁场的时空特性[J]. 电工技术学报, 2018, 33(19): 4486-4495. Wang Quandi, Kang Jianwei, Wang Yingcong, et al.Temporal and spatial characteristics of magnetic fields in magnetic resonant wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4486-4495. [23] Lü Xing, Wang Zheng, Yang Wenhui.Field free line generation for magnetic particle imaging based on the mirror rule[C]//IEEE 2013 6th International Con- ference on Biomedical Engineering and Informatics (BMEI), Hangzhou, China, 2013: 43-47. [24] 贺中华, 何为, 贺玉成, 等. 皮肤烧伤深度检测的单边核磁共振浅层成像磁体系统[J]. 电工技术学报, 2019, 34(3): 449-458. He Zhonghua, He Wei, He Yucheng, et al.Unilateral nuclear magnetic resonance superficial imaging magnet system for skin burn depth assessment[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 449-458. [25] 郑广君. 适应需求侧管理的高效中距离磁共振式电动汽车无线充电线圈优化设计[J]. 电工技术学报, 2017, 32(增刊1): 209-216. Zheng Guangjun.Optimization design of efficient middle-distance magnetic-resonance wireless charge coil suitable for electric vehicle charging[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(S1): 209-216.