Abstract:Magnetic nanoparticle imaging (MPI) is a new detection technology. It has the advantages of safety, fast detection and high accuracy in imaging. Field-free line scanning can image the magnetic nanoparticles distribution inside the measured object, which has important research significance. Due to small detection area and accuracy in the MPI, here an open bore MPI method is proposed. The field-free line (FFL) and its rotation mode for open magnetic particle tomography are studied. The way of the electric drive is designed to realize the rotation of FFL under the open structure. The simulation results show that the detection aperture of the system structure is 200mm high and leaving sides open,the rotation angle error of field-free line is less than 0.025 9°, the width of FFL is less than 0.95mm, single scan time is 3.6ms. The open bore MPI system designed in this paper effectively expands the detection aperture and fitting the submillimeter precision to image the magnetic particle distribution and millisecond detection speed.
祖婉妮, 柯丽, 杜强, 刘洋洋. 开放式磁性纳米粒子断层成像线型旋转零磁场设计[J]. 电工技术学报, 2020, 35(19): 4161-4170.
Zu Wanni, Ke Li, Du Qiang, Liu Yangyang. Electronically Rotated Field-Free Line Generation for Open Bore Magnetic Particle Tomography Imaging. Transactions of China Electrotechnical Society, 2020, 35(19): 4161-4170.
[1] Gleich B, Weizenecker J.Tomographic imaging using the nonlinear response of magnetic particles[J]. Nature, 2005, 435(7046): 1214-1217. [2] Gleich B, Weizenecker J, Rahmer J, et al.Three-dimensional real-time in vivo magnetic particle imaging[J]. Physics in Medicine and Biology, 2009, 54(5): L1-L10. [3] Haegele J, Rahmer J, Gleich B, et al.Magnetic particle imaging: visualization of instruments for cardiovascular intervention[J]. Radiology, 2012, 265(3): 933-938. [4] Rahmer J, Wirtz D, Bontus C, et al.Interactive magnetic catheter steering with 3D real-time feedback using multi-color magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2017, 36(7): 1449-1456. [5] Vaalma S, Rahmer J, Panagiotopoulos N, et al.Magnetic particle imaging: experimental quantification of vascular stenosis using stationary stenosis phantoms[J]. Plos One, 2017, 12(1): e0168902. [6] Salamon J, Hofmann M, Jung C, et al.Magnetic particle magnetic resonance imaging: in-vitro MPI-guided real time catheter tracking and 4D angioplasty using a road map and blood pool tracer approach[J]. Plos One, 2016, 11(6): e0156899. [7] Zheng Bo, See M P V, Yu E, et al. Quantitative magnetic particle imaging monitors the transplantation, bio-distribution, and clearance of stem cells in vivo[J]. Theranostics, 2016, 6(3): 291-301. [8] Them K, Salamon J, Szwargulski P, et al.Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging[J]. Physics in Medicine and Biology, 2016, 61(9): 3279-3290. [9] Yu E Y, Bishop M, Zheng Bo, et al.Magnetic particle imaging: a novel in vivo imaging platform for cancer detection[J]. Nano Letters. 2017, 17(3): 1648-1654. [10] Goodwill P W, Conolly S M.The X-space formulation of the magnetic particle imaging process:1-D signal, resolution, bandwidth, SNR, and magneto stimulation[J]. IEEE Transactions on Medical Imaging, 2010, 29(11) : 1851-1859. [11] Goodwill P W, Conolly S M.Multidimensional X-space magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2011, 30(9): 1581-1590. [12] Goodwill P W, Konkle J J, Zheng B, et al.Projection x-space magnetic particle imaging[J]. IEEE Transactions on Medical Imaging. 2012, 31(5): 1076-1085. [13] Konkle J J, Goodwill P W, Saritas E U, et al.Twenty-fold acceleration of 3D projection reconstruction MPI[J]. Biomed Tech (Berl), 2013, 58(6): 565-576. [14] Weizenecker J, Gleich B, Borgert.Magnetic particle imaging using a field free line[J]. Journal of Physics D: Applied Physics, 2008, 41(10) : 105009. [15] Knopp T, Erbe M, Biederer S, et al.Efficient generation of a magnetic field-free line[J]. Medical Physics, 2010, 37(7): 3538-3540. [16] Erbe M, Knopp T, Sattel T F, et al.Experimental generation of an arbitrarily rotated field-free line for the use in magnetic particle imaging[J]. Medical Physics, 2011, 38(9): 5200. [17] Erbe M.Field free line magnetic particle imaging[M]. Südost: Springer Fachmedien Wiesbaden, 2014. [18] Knopp T, Gdaniec, N, Möddel M, et al. Magnetic particle imaging: from proof of principle to preclinical applications[J]. Physics in Medicine and Biology, 2017, 62(14): R124-R178. [19] Sattel T F, Knopp T, Biederer S, et al.Single-sided device for magnetic particle imaging[J]. Journal of Physics D: Applied Physics, 2009, 42(1): 1-5. [20] Tonyushkin A.Single-sided field-free line generator magnet for multi-dimensional magnetic particle imaging[J]. IEEE Transactions on Magnetics, 2017, 53(9): 5300506. [21] Lü Xing, Wang Zheng, Yang Wenhui.Field free line generation for magnetic particle imaging based on the mirror rule[C]//IEEE International Conference on Biomedical Engineering & Informatics, Hangzhou, 2014, DOI: 110.1109/BMEI.2013.6746904. [22] 雷银照. 用坐标变换方法求解倾斜圆环线圈时谐电磁场的解析解[J]. 电工技术学报, 2010, 25(4): 15-18. Lei Yinzhao.Analytical solution to time-harmonic electromagnetic field of tilted circular coil by the coordinate transformation method[J]. Transactions of China Electrotechnical Society, 2010, 25(4): 15-18. [23] Knopp T, Buzug T M.Magnetic particle imaging[M]. Südost: Springer Fachmedien Wiesbaden, 2012. [24] 陈德智, 姜贺, 张哲, 等. 有限元法的一种数据结构[J]. 电工技术学报, 2015, 30(1): 1-7. Chen Dezhi, Jiang He, Zhang Zhe, et al.A data structure for finite element method[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 1-7. [25] 王泽忠, 石雨鑫. 三维电场多极子曲面边界元方法研究[J]. 电工技术学报, 2018, 33(24): 5797-5804. Wang Zezhong, Shi Yuxin.Fast multipole curved boundary element method for 3D electrostatic field[J]. Transactions of China Electrotechnical Society, 2018, 33(24): 5797-5804. [26] Rahmer J, Weizenecker J, Gleich B, et al.Signal encoding in magnetic particle imaging: properties of the system function[J]. BMC Medical Imaging, 2009, 9(1): 1-21.