Abstract:With the voltage source converter (VSC) technology continues improving, the development orientations of high-voltage direct current based voltage source converter (VSC-HVDC) system are high-voltage, large capacity and multi-terminal. For the technical difficulties of strong nonlinearity and multi-terminal coordination in VSC-HVDC system, an improved droop control method is proposed based on the first multi-terminal VSC-HVDC project of the world. In this method, multiple constant voltage control stations are in operation at the same time, thus during transient process, the system can continue to run when the voltage control stations exit. This can maintain the DC network power balance. Conversion between constant voltage control stations and power control stations can be realized by measuring DC voltage and changing controller output value dynamically. Namely, the switching controller selects power controller output or DC voltage controller output, without inter-station communication. Compared with the traditional single-point voltage-controlled multi- terminal VSC-HVDC system, it has better flexibility. In addition, the back stepping controller of DC voltage is designed for extreme conditions that voltage control stations fail completely. It can reduce transient overvoltage level effectively. Combined with droop control strategy, its multi-terminal coordinated control function is manifested and the immunity performance is improved. The simulations have verified the proposed methods.
吴杰, 王志新. 多端柔性直流输电系统的改进下垂控制策略[J]. 电工技术学报, 2017, 32(20): 241-250.
Wu Jie, Wang Zhixin. Improved Droop Control Strategy for Multi-Terminal Voltage Source Converter-HVDC. Transactions of China Electrotechnical Society, 2017, 32(20): 241-250.
[1] Wang Zhixin, Jiang Chuanwen, Ai Qian, et al. The key technology of offshore wind farm and its new development in China[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 216-222. [2] 杨小磊. 多端柔性直流输电系统接入某海岛电网的研究[J]. 电气技术, 2015(5): 12-21. Yang Xiaolei. Study on the access of multi-terminal VSC-HVDC to an island grid[J]. Electrical Engineering, 2015(5): 12-21. [3] 姚良忠, 吴婧, 王志冰, 等. 未来高压直流电网发展形态分析[J]. 中国电机工程学报, 2014, 34(34): 6007-6020. Yao Liangzhong, Wu Jing, Wang Zhibing, et al. Pattern analysis of future HVDC grid development[J]. Proceedings of the CSEE, 2014, 34(34): 6007-6020. [4] 牛博彦, 胡林献, 张众. 基于VSC-HVDC的风电场并网系统潮流算法研究[J]. 电力系统保护与控制, 2014, 42(24): 6-11. Niu Boyan, Hu Linxian, Zhang Zhong. Research on power flow of wind farm grid-connected system based on VSC-HVDC[J]. Power System Protection and Control, 2014, 42(24): 6-11. [5] 陈树勇, 徐林岩, 孙栩, 等. 基于多端柔性直流输电的风电并网控制研究[J]. 中国电机工程学报, 2014, 34(增刊): 32-38. Chen Shuyong, Xu Linyan, Sun Xu, et al. The control of wind power integration based on multi-terminal high voltage DC transmission with voltage source converter[J]. Proceedings of the CSEE, 2014, 34(S): 32-38. [6] 邓旭, 王东举, 沈扬, 等. 舟山多端柔性直流输电工程换流站内部暂态过电压[J]. 电力系统保护与控制, 2013, 41(18): 111-119. Deng Xu, Wang Dongju, Shen Yang, et al. Research on transient overvoltage for converter station of Zhoushan multi-terminal VSC-HVDC project[J]. Power System Protection and Control, 2013, 41(18): 111-119. [7] 孙文博, 徐华利, 付媛, 等. 应用于大型风电基地功率外送的多端直流输电系统协调控制[J]. 电网技术, 2013, 37(6): 1596-1601. Sun Wenbo, Xu Huali, Fu Yuan, et al. Coordinated control of multi-terminal DC transmission system to send out power from large-scale wind farm[J]. Power System Technology, 2013, 37(6): 1596-1601. [8] 郭静丽, 王秀丽, 侯雨伸, 等. 基于改进FD法的柔性直流输电系统可靠性评估[J]. 电力系统保护与控制, 2015, 43(23): 8-13. Guo Jingli, Wang Xiuli, Hou Yushen, et al. Reliability assessment of the VSC-HVDC trans- mission system based on a modified FD method[J]. Power System Protection and Control, 2015, 43(23): 8-13. [9] Xu L, Yao L Z. DC voltage control and power dispatch of a multi-terminal HVDC system for integrating large offshore wind farms[J]. IET Renewable Power Generation, 2010, 5(3): 223-233. [10] 徐殿国, 刘瑜超, 武健. 多端直流输电系统控制研究综述[J]. 电工技术学报, 2015, 30(9): 1-12. Xu Dianguo, Liu Yuchao, Wu Jian. Review on control strategies of multi-terminal direct current transmission system[J]. Transactions of China Electrotechnical Society, 2015, 30(9): 1-12. [11] Pinto R T, Bauer P, Rodrigues S F, et al. A novel distributed direct voltage control strategy for gridintegration of offshore wind energy systems through MTDC network[J]. IEEE Transactions on Industrial Electronics, 2013, 60(6): 2429-2441. [12] 胡静. 基于MMC的多端直流输电系控制方法研究[D]. 北京: 华北电力大学, 2013. [13] 罗永捷, 李耀华, 王平, 等. 多端柔性直流输电系统下垂控制P-V特性曲线时域分析[J]. 电工技术学报, 2014, 29(1): 408-415. Luo Yongjie, Li Yaohua, Wang Ping, et al. Time-domain analysis of P-V characteristic for droop control strategy of VSC-MTDC transmission system[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 408-415. [14] 熊凌飞, 韩民晓. 基于组合方式的多端柔性直流输电系统控制策略[J]. 电网技术, 2015, 39(6): 1586- 1592. Xiong Lingfei, Han Minxiao. A novel combined control strategy for VSC-MTDC[J]. Power System Technology, 2015, 39(6): 1586-1592. [15] Vrana T K, Beerten J, Belmansb R, et al. A classification of DC node voltage control methods for HVDC grids[J]. Electric Power Systems Research, 2013, 103(8): 137-144. [16] Prieto-Araujo E, Bianchi F D, Junyent-Ferré A, et al. Methodology for droop control dynamic analysis of multiterminal VSC-HVDC grids for offshore wind farms[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2476-2485. [17] Abdel-Khalik A S, Massoud A M, Elserougi, et al. Optimum power transmission-based droop control design for multi-terminal HVDC of offshore wind farms[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3401-3409. [18] 王伟, 石新春, 付超, 等. 海上多端直流输电系统协调控制研究[J]. 电网技术, 2014, 38(1): 8-15. Wang Wei, Shi Xinchun, Fu Chao, et al. Coordinated control of multi-terminal HVDC transmission system for offshore wind farms[J]. Power System Tech- nology, 2014, 38(1): 8-15. [19] 王志新, 吴杰, 徐烈, 等. 大型海上风电场并网VSC-HVDC变流器关键技术[J]. 中国电机工程学报, 2013, 33(19): 14-27. Wang Zhixin, Wu Jie, Xu Lie, et al. Key technologies of large offshore wind farm VSC-HVDC converters for grid integration[J]. Proceedings of the CSEE, 2013, 33(19): 14-27. [20] 李响, 韩民晓. 海上风电串联多端VSC-HVDC协调控制策略[J]. 电工技术学报, 2013, 28(5): 42-57. Li Xiang, Han Minxiao. A coordinated control strategy of series multi-terminal VSC-HVDC for offshore wind farm[J]. Transactions of China Electro- technical Society, 2013, 28(5): 42-57. [21] 王俊生, 傅闯, 胡铭, 等. 并联型多端直流输电系统保护相关问题探讨[J]. 中国电机工程学报, 2014, 34(28): 4923-4931. Wang Junsheng, Fu Chuang, Hu Ming, et al. Discussion on the protection in parallel-type multi-terminal HVDC systems[J]. Proceedings of the CSEE, 2014, 34(28): 4923-4931. [22] 阎发友, 汤广福, 贺之渊, 等. 基于MMC的多端柔性直流输电系统改进下垂控制策略[J]. 中国电机工程学报, 2014, 34(3): 397-404. Yan Fayou, Tang Guangfu, He Zhiyuan, et al. An improved droop control strategy for MMC-based VSC-MTDC systems[J]. Proceedings of the CSEE, 2014, 34(3): 397-404. [23] 徐政, 等著. 柔性直流输电系统[M]. 北京: 机械工业出版社, 2013. [24] Lie Xu, Yao Liangzhong, Sasse C. Grid integration of large DFIG-based wind farms using VSC trans- mission[J]. IEEE Transactions on Power Systems, 2007, 22(3): 976-984. [25] 吴杰, 王志新, 王国强. 电压源型直流输电变流器系统中电网侧变流器的反步法控制[J]. 控制理论与应用, 2013, 30(11): 1408-1413. Wu Jie, Wang Zhixin, Wang Guoqiang, et al. Back- stepping control for voltage source converter-high voltage direct current grid side converter[J]. Control Theory & Applications, 2013, 30(11): 1408-1413. [26] 熊凌飞, 韩民晓, 姚蜀军. 锁相环对多端柔性直流稳定性作用分析及参数选择研究[J]. 电工技术学报, 2015, 30(16): 203-212. Xiong Lingfei, Han Minxiao, Yao Shujun. Influence of PLL on the stability analysis of VSC-MTDC and parameter selection[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 203-212. [27] 张兴, 张崇巍. PWM整流器及其控制[M]. 北京: 机械工业出版社, 2012.