Transient Stability Mechanism and Judgment for Inverter Interfaced Distributed Generators Connected with Public Grids
Yu Moduo1, Huang Wentao1, Tai Nengling1, Ma Zhoujun2, Lin Yayang3
1. School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China; 2. Jiangsu Provincial Electric Power Corporation Nanjing Power Supply Department Nanjing 210019 China; 3. Jiangsu Provincial Electric Power Corporation Nantong Power Supply Department Nantong 226006 China
Abstract:The inverter interfaced distributed generator (IIDG) connected with the distributed grid is an important application of renewable energy. The stable operation of the IIDG depends on its control system and the connected grid. The transient response of the IIDG is complex, and it is prone to fluctuations or oscillations in output power and power angle when a transient evert occurs. This paper analyzes the controller and the structure of the connected grid to build the active power curves of the IIDG. The transient stability criteria are also proposed by analyzing the active power curve cluster. The influence of the network parameters and nominal power on the transient stability is also analyzed. A transient stability iteration algorithm is proposed by establishing the transient process of the IIDG, which can calculate the power angle variation. Study cases built in PSCAD/EMTDC verify the proposed mechanism, and show that the transient stability iteration algorithm is effective and feasible.
余墨多, 黄文焘, 邰能灵, 马洲俊, 林亚阳. 逆变型分布式电源并网运行暂态稳定机理与评估方法[J]. 电工技术学报, 2022, 37(10): 2596-2610.
Yu Moduo, Huang Wentao, Tai Nengling, Ma Zhoujun, Lin Yayang. Transient Stability Mechanism and Judgment for Inverter Interfaced Distributed Generators Connected with Public Grids. Transactions of China Electrotechnical Society, 2022, 37(10): 2596-2610.
[1] 倪萌, 王蓓蓓, 朱红, 等. 能源互联背景下面向高弹性的多元融合配电网双层分布式优化调度方法研究[J]. 电工技术学报, 2022, 37(1): 208-219. Ni Meng, Wang Beibei, Zhu Hong, et al.Study of two-layer distributed optimal scheduling strategy for highly elastic multi-resource fusion distribution network in energy interconnection environment[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 208-219. [2] 杨珺, 侯俊浩, 刘亚威, 等. 分布式协同控制方法及在电力系统中的应用综述[J]. 电工技术学报, 2021, 36(19): 4035-4049. Yang Jun, Hou Junhao, Liu Yawei, et al.Distributed cooperative control method and application in power system[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4035-4049. [3] 马麟, 刘建鹏. 考虑时序特性和环境效益的多目标多类型分布式电源规划[J]. 电力系统保护与控制, 2016, 44(19): 32-40. Ma Lin, Liu Jianpeng.Multi-objective planning of multi-type distributed generation considering timing characteristics and environmental benefits[J]. Power System Protection and Control, 2016, 44(19): 32-40. [4] Katiraei F, Iravani M R, Lehn P W.Micro-grid autonomous operation during and subsequent to islanding process[J]. IEEE Transactions on Power Delivery, 2005, 20(1): 248-257. [5] 刘子文, 苗世洪, 范志华, 等. 基于自适应下垂特性的孤立直流微电网功率精确分配与电压无偏差控制策略[J]. 电工技术学报, 2019, 34(4): 795-806. Liu Ziwen, Miao Shihong, Fan Zhihua, et al.Accurate power allocation and zero steady-state error voltage control of the islanding DC microgird based on adaptive droop characteristics[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 795-806. [6] 陈海焱, 段献忠, 陈金富. 分布式发电对配网静态电压稳定性的影响[J]. 电网技术, 2006, 30(19): 27-30. Chen Haiyan, Duan Xianzhong, Chen Jinfu.Impacts of distributed generation on steady state voltage stability of distribution system[J]. Power System Technology, 2006, 30(19): 27-30. [7] 帅智康, 邹福筱, 涂春鸣. 微网暂态稳定性研究[J]. 电力系统自动化, 2015, 39(16): 151-159. Shuai Zhikang, Zou Fuxiao, Tu Chunming.Review on transient stability of microgrid[J]. Automation of Electric Power Systems, 2015, 39(16): 151-159. [8] Majumder R.Some aspects of stability in micro- grids[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3243-3252. [9] Ortega A, Milano F.Generalized model of VSC-based energy storage systems for transient stability analysis[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3369-3380. [10] 刘津铭, 陈燕东, 伍文华, 等. 孤岛微电网序阻抗建模与高频振荡抑制[J]. 电工技术学报, 2020, 35(7): 1538-1552. Liu Jinming, Chen Yandong, Wu Wenhua, et al.Sequence impedance modeling and high-frequency oscillation suppression method for island microgrid[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1538-1552. [11] 刘彦呈, 庄绪州, 张勤进, 等. 基于虚拟频率的直流微电网下垂控制策略[J]. 电工技术学报, 2021, 36(8): 1693-1702. Liu Yancheng, Zhuang Xuzhou, Zhang Qinjin, et al.A virtual current-frequency droop control in DC microgrid[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1693-1702. [12] Alaboudy A H K, Zeineldin H H, Kirtley J. Microgrid stability characterization subsequent to fault-triggered islanding incidents[J]. IEEE Transactions on Power Delivery, 2012, 27(2): 658-669. [13] Omagari Y, Funaki T.Numerical study of transient stability criteria for an inverter-based distributed generator[C]//2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Aalborg, Denmark, 2012: 865-871. [14] 黄林彬, 章雷其, 辛焕海, 等. 下垂控制逆变器的虚拟功角稳定机理分析[J]. 电力系统自动化, 2016, 40(12): 117-124. Huang Linbin, Zhang Leiqi, Xin Huanhai, et al.Mechanism analysis of virtual power angle stability in droop-controlled inverters[J]. Automation of Electric Power Systems, 2016, 40(12): 117-124. [15] Xin Huanhai, Huang Linbin, Zhang Leiqi, et al.Synchronous instability mechanism of Pf droop- controlled voltage source converter caused by current saturation[J]. IEEE Transactions on Power Systems, 2016, 31(6): 5206-5207. [16] Ibrahim H M, El Moursi M S, Huang P H. Adaptive roles of islanded microgrid components for voltage and frequency transient responses enhancement[J]. IEEE Transactions on Industrial Informatics, 2015, 11(6): 1298-1312. [17] Nguyen D H, Tran H N, Narikiyo T, et al.A Lyapunov approach for transient stability analysis of droop inverter-based mesh microgrids using line- based model[C]//IEEE Control Technology and Applications (CCTA), Hawaii, America, 2017: 1655-1660. [18] Hart P, Lesieutre B.Energy function for a grid-tied, droop-controlled inverter[C]//IEEE North American Power Symposium (NAPS), Pullman, America, 2014: 1-6. [19] Quan Xiangjun, Wu Zaijun, Dou Xiaobo, et al.Load current decoupling based LQ control for three-phase inverter[J]. IEEE Transactions on Power Electronics, 2017, 33(6): 1670-1676. [20] Ghosh S, Rahman S, Pipattanasomporn M.Distri- bution voltage regulation through active power curtailment with PV inverters and solar generation forecasts[J]. IEEE Transactions on Sustainable Energy, 2017, 8(1): 13-22. [21] Wang Zhaoyu, Wang Jianhui, Chen Bokan, et al.MPC-based voltage/var optimization for distribution circuits with distributed generators and exponential load models[J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2412-2420. [22] 吴丽, 郑昕, 朱小红, 等. 三相四线制系统中计及零序电流特性的分布式电源逆变器有功和无功功率控制[J]. 电力系统保护与控制, 2019, 47(22): 126-133. Wu Li, Zheng Xin, Zhu Xiaohong, et al.Active and reactive power control with zero sequence current characteristics for distributed generation inverters in three-phase four-wire system[J]. Power System Protection and Control, 2019, 47(22): 126-133. [23] 任振宇, 张师, 田超华, 等. 基于轨迹灵敏度的风火打捆系统暂态稳定预防控制[J]. 电气技术, 2016, 17(6): 5-8. Ren Zhenyu, Zhang Shi, Tian Chaohua, et al.Preventive control of improving wind-thermal bundled system transient stability based on trajectory sensiti- vity[J]. Electrical Engineering, 2016, 17(6): 5-8. [24] Potamianakis E G, Vournas C D.Short-term voltage instability: effects on synchronous and induction machines[J]. IEEE Transactions on Power Systems, 2006, 21(2): 791-798. [25] Barklund E, Pogaku N, Prodanovic M, et al.Energy management in autonomous microgrid using stability- constrained droop control of inverters[J]. IEEE Transactions on Power Electronics, 2008, 23(5): 2346-2352. [26] 杨道培, 丁志刚, 曹炜. 基于下垂控制的直流微电网小扰动稳定性分析[J]. 电气技术, 2015, 16(7): 20-26. Yang Daopei, Ding Zhigang, Cao Wei.Small signal stability analysis of dc micro-grid based on droop control[J]. Electrical Engineering, 2015, 16(7): 20-26. [27] Soultanis N L, Papathanasiou S A, Hatziargyriou N D.A stability algorithm for the dynamic analysis of inverter dominated unbalanced LV microgrids[J]. IEEE Transactions on Power Systems, 2007, 22(1): 294-304. [28] Iyer S V, Belur M N, Chandorkar M C.A generalized computational method to determine stability of a multi-inverter microgrid[J]. IEEE Transactions on Power Electronics, 2010, 25(9): 2420-2432.