Analysis of Sub-Synchronous Oscillation Characteristics and Suppression Strategies of MC-PMSG Transmitted Through LCC-HVDC Systems
Zhen Yongzan1, Ju Mengqin1, Gao Benfeng1, Lu Wenqing2, Liu Yinglin2
1. Hebei Key Laboratory of Distributed Energy Storage and Micro-grid North China Electric Power University Baoding 071003 China; 2. State Grid Jibei Electric Power Research Institute Beijing 100045 China
Abstract:Due to the reverse distribution of wind energy resources and load in China, the long-distance transmission of high power has become an inevitable requirement. The line-commutated converter-based high-voltage direct current (LCC-HVDC) has become one of the primary forms of long-distance transmission for new energy due to its large transmission capacity and low cost. The matching-control-based grid-forming permanent magnet synchronous generator (MC-PMSG) can enhance the voltage stability of the sending-end power grid in LCC-HVDC transmission systems for wind power in the desert and Gobiregions. However, MC-PMSG through LCC-HVDC transmission systems have the risk of sub-synchronous oscillation (SSO), and its oscillation characteristics and suppression strategies require further study. This paper investigates the SSO characteristics and suppression strategies in MC-PMSG using LCC-HVDC transmission systems. First, a small-signal model of the MC-PMSG through an LCC-HVDC transmission system is established using the modularization modeling technique, and the eigenvalues are utilized to investigate the participation of the MC-PMSG and LCC-HVDC in each SSO mode of the system. Then, the position of the supplementary subsynchronous damping controller (SSDC) is determined. According to the damping path method, the sub-synchronous interaction of the system is broken down into four independent paths, and the influence of SSDC on the SSO mode of the system is separated and quantified. Taking the maximum positive damping provided by SSDC as the optimization objective, particle swarm optimization (PSO) is employed to iteratively optimize SSDC parameters, which significantly enhances the total damping of the system and thereby realizes SSO suppression. Based on the PSCAD/EMTDC electromagnetic transient simulation platform, the theoretical analysis results are verified by changing the parameters of the MC-PMSG controller, DC capacitance, MC-PMSG capacity, and LCC-HVDC controller. According to the analysis results of SSO characteristics, the unstable oscillation mode of the system is dominated by DC capacitance voltage and GSC modulation phase θp. Therefore, SSDC is added to the GSC control link from the MC-PMSG DC capacitance to reduce the SSO risk of the system. The input signal of the SSDC is selected as the DC capacitance voltage, UDC, and the output signal is attached to the GSC modulation phase θp. According to the analysis results of the damping path method, the transmission process of disturbance between subsystems can be broken down into four independent loops. SSDC provides a new propagation path for sub-synchronous frequency disturbance, offering a certain amount of positive damping to the SSO mode. Negative damping from other damping paths can be compensated, thereby weakening the system's SSO. The main conclusions of this paper are as follows. (1) The system sent by MC-PMSG through LCC-HVDC has an SSO risk in some working conditions, and it is a low-damping SSO mode dominated by the DC capacitance of MC-PMSG. (2) SSDC introduces a new subsynchronous component path into the Heffron-Philips model of MC-PMSG DC capacitance, which is separated and quantified based on the damping path method. Taking the maximum positive damping provided by SSDC as the optimization target, iterative optimization is carried out through PSO, and the total damping of the system is greatly improved. (3) When the parameters of the MC-PMSG controller, LCC-HVDC controller, MC-PMSG capacity, and DC capacitance change, SSDC can significantlyimprove the total damping of the system. Thus, SSO can be suppressed.
甄永赞, 巨孟沁, 高本锋, 卢文清, 刘瑛琳. MC-PMSG经LCC-HVDC送出系统次同步振荡特性分析与抑制策略[J]. 电工技术学报, 2026, 41(2): 558-574.
Zhen Yongzan, Ju Mengqin, Gao Benfeng, Lu Wenqing, Liu Yinglin. Analysis of Sub-Synchronous Oscillation Characteristics and Suppression Strategies of MC-PMSG Transmitted Through LCC-HVDC Systems. Transactions of China Electrotechnical Society, 2026, 41(2): 558-574.
[1] 张加卿, 郭春义. 跟网-构网光伏与火电打捆经传统直流外送系统次同步扭振机理研究[J/OL]. 中国电机工程学报, 1-15[2025-07-25]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240801.1521.007.html. Zhang Jiaqing, Guo Chunyi. Research on sub- synchronous torsional vibration mechanism for grid- following and grid-forming photovoltaic and thermal power bundling system via LCC-HVDC trans- mission[J/OL]. Proceedings of the CSEE, 1-15[2025- 07-25]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240801.1521.007.html. [2] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191. Zhuo Zhenyu, Zhang Ning, Xie Xiaorong, et al.Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2019, 45(9): 171-191. [3] 刘洪波, 阎禹同, 王曦, 等. 多馈入交直流混联系统小干扰稳定研究综述[J]. 发电技术, 2023, 44(04): 565-575. Liu Hongbo, Yan Yutong, Wang Xi, et al.A review of small signal stability studies of multi-infeed AC-DC hybrid system[J]. Power Generation Technology, 2023, 44(04): 565-575. [4] 于琳琳, 丁咚, 贾鹏, 等. 兼容跟网型-构网型系统的多域映射阻抗分析方法[J/OL]. 电源学报, 1-12 [2025-03-13]. https://link.cnki.net/urlid/12.1420.TM.20250918.0938.004. Yu Linlin, Ding Dong, Jia Peng, et al. Multi-domain mapping impedance analysis Method compatible with grid-following and grid-forming systems[J/OL]. Journal of Power Supply, 1-12[2025-03-13]. https://link.cnki.net/urlid/12.1420.TM.20250918.0938.004. [5] 黄萌, 舒思睿, 李锡林, 等. 面向同步稳定性的电力电子并网变流器分析与控制研究综述[J]. 电工技术学报, 2024, 39(19): 5978-5994. Huang Meng, Shu Sirui, Li Xilin, et al.A review of synchronization-stability-oriented analysis and control of power electronic grid-connected converters[J]. Transactions of China Electrotechnical Society, 2024, 39(19): 5978-5994. [6] 薛翼程, 张哲任, 徐政, 等. 构网型变流器对交流系统低频振荡的影响分析与阻尼控制[J]. 电力系统自动化, 2023, 47(16): 103-113. Xue Yicheng, Zhang Zheren, Xu Zheng, et al.Impact analysis and damping control of grid-forming con- verter for low-frequency oscillation of AC system[J]. Automation of Electric Power Systems, 2023, 47(16): 103-113. [7] 孙正龙, 郝舒宇, 李明达, 等. 含构网型双馈风电的电力系统低频振荡能量结构分析方法[J]. 电工技术学报, 2025, 40(5): 1411-1426. Sun Zhenglong, Hao Shuyu, Li Mingda, et al.Low frequency oscillation analysis method for grid- forming doubly-fed wind power systems based on energy structures[J]. Transactions of China Electro- technical Society, 2025, 40(5): 1411-1426. [8] 许诘翊, 刘威, 刘树, 等. 电力系统变流器构网控制技术的现状与发展趋势[J]. 电网技术, 2022, 46(9): 3586-3595. Xu Jieyi, Liu Wei, Liu Shu, et al.Current state and development trends of power system converter grid- forming control technology[J]. Power System Tech- nology, 2022, 46(9): 3586-3595. [9] Huang Linbin, Xin Huanhai, Wang Zhen.Damping low-frequency oscillations through VSC-HVDC stations operated as virtual synchronous machines[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5803-5818. [10] 王东泽, 孙海顺, 黄碧月, 等. 基于虚拟同步控制的电压源型直驱风电机组并网稳定性分析[J]. 高电压技术, 2022, 48(8): 3282-3294. Wang Dongze, Sun Haishun, Huang Biyue, et al.Analysis of grid-connected stability of voltage-source- type PMSG-based wind turbine based on virtual synchronous control[J]. High Voltage Engineering, 2022, 48(8): 3282-3294. [11] 陆秋瑜, 赵仕兴, 杨银国, 等. 考虑风轮机动态特性的虚拟同步永磁直驱风机阻尼转矩系数分析[J]. 高电压技术, 2022, 48(10): 3838-3847. Lu Qiuyu, Zhao Shixing, Yang Yinguo, et al.Damping torque coefficient analysis of virtual synchronous direct-driven permanent magnetic synchronous gen- erator considering wind turbine dynamics[J]. High Voltage Technology, 2022, 48(10): 3838-3847. [12] 王子骏, 庄可好, 辛焕海, 等. 虚拟同步直驱风机低频振荡机理分析及阻尼补偿控制[J]. 电力系统自动化, 2024, 48(2): 95-104. Wang Zijun, Zhuang Kehao, Xin Huanhai, et al.Low-frequency oscillation mechanism analysis and damping compensation control of virtual synchronous direct-driven wind turbine generators[J]. Automation of Electric Power Systems, 2024, 48(2): 95-104. [13] 高本锋, 邓鹏程, 孙大卫, 等. 基于匹配控制的构网型直驱风电场次同步振荡机理与特性研究[J]. 电工技术学报, 2024, 39(9): 2755-2770. Gao Benfeng, Deng Pengcheng, Sun Dawei, et al.Mechanism and characteristics of subsynchronous oscillation of grid-forming direct-drive wind farm based on matching control[J]. Transactions of China Electrotechnical Society, 2019, 39(9): 2755-2770. [14] 高本锋, 董涵枭, 孙大卫, 等. 匹配控制构网型直驱风电场经LCC-HVDC送出系统的次同步振荡特性及机理分析[J]. 中国电机工程学报, 2024, 44(23): 9296-9310. Gao Benfeng, Dong Hanxiao, Sun David, et al.Sub-synchronous oscillation characteristics and mechanism analysis of matching-control-based grid- forming direct drive wind farm transmitted through LCC-HVDC system[J]. Proceedings of the CSEE, 2024, 44(23): 9296-9310. [15] 郝锦文, 马永光, 孙大卫. 构网型风电-串补输电系统的次同步振荡特性分析[J]. 电力科学与工程, 2023, 39(9): 55-62. Hao Jinwen, Ma Yongguang, Sun Dawei.Analysis of sub-synchronous oscillation characteristics of grid- type wind power-series supply transmission system[J]. Electric Power Science and Engineering, 2023, 39(9): 55-62. [16] 李奕曈, 艾诚, 覃瑶, 等. 基于匹配控制的构网型变换器小扰动稳定性综述[J]. 高电压技术, 2025, 51(2): 774-792. Li Yitong, Ai Cheng, Qin Yao, et al.An overview of small-disturbance stability of grid-forming converters based on matching control[J]. High Voltage Tech- nology, 2025, 51(2): 774-792. [17] Rosso R, Wang Xiongfei, Liserre M, et al.Grid- forming converters: control approaches, grid- synchronization, and future trends: a review[J]. IEEE Open Journal of Industry Applications, 2021, 2: 93-109. [18] 高本锋, 刘毅, 李蕴红, 等. 直驱风电场与LCC- HVDC次同步交互作用的扰动传递路径及阻尼特性分析[J]. 中国电机工程学报, 2021, 41(5): 1713-1729. Gao Benfeng, Liu Yi, Li Yunhong, et al.Analysis on disturbance transfer path and damping characteristics of sub-synchronous interaction between D-PMSG- based wind farm and LCC-HVDC[J]. Proceedings of the CSEE, 201, 41(5): 1713-1729. [19] 刘斌, 呼斯乐, 王甲军, 等. 直驱风电场经LCC- HVDC外送系统阻抗建模及振荡机理分析[J]. 中国电机工程学报, 2021, 41(10): 3492-3504, 3674. Liu Bin, Hu Sile, Wang Jiajun, et al.Impedance modeling and oscillation mechanism analysis of D- PMSG-based wind farms integration through LCC- HVDC system[J]. Proceedings of the CSEE, 2021, 41(10): 3492-3504, 3674. [20] 高本锋, 崔意婵, 李蕴红, 等. D-PMSG经LCC- HVDC送出系统的次同步振荡特性分析[J]. 中国电机工程学报, 2022, 42(6): 2084-2096. Gao Benfeng, Cui Yichan, Li Yunhong, et al.Analysis of subsynchronous oscillation characteristics of D-PMSG integrated with LCC-HVDC system[J]. Proceedings of the CSEE, 2022, 42(6): 2084-2096. [21] 肖云涛, 李光辉, 王伟胜, 等. 新能源基地经LCC- HVDC送出系统振荡机理分析与抑制策略(三): 振荡抑制策略[J]. 中国电机工程学报, 2024, 44(12): 4748-4759. Xiao Yuntao, Li Guanghui, Wang Weisheng, et al.Oscillation mechanism analysis and suppression strategy of renewable energy base connected into LCC-HVDC (Part Ⅲ): oscillation suppression strategy[J]. Proceedings of the CSEE, 2024, 44(12): 4748-4759. [22] 张冲, 王伟胜, 何国庆, 等. 基于序阻抗的直驱风电场次同步振荡分析与锁相环参数优化设计[J]. 中国电机工程学报, 2017, 37(23): 6757-6767, 7067. Zhang Chong, Wang Weisheng, He Guoqing, et al.Analysis of sub-synchronous oscillation of full- converter wind farm based on sequence impedance and an optimized design method for PLL para- meters[J]. Proceedings of the CSEE, 2017, 37(23): 6757-6767, 7067. [23] 徐万万, 彭志鹏, 刘江, 等. 基于阻抗比参数自适应的直驱风机次同步振荡抑制策略[J]. 控制工程, 2023, 30(7): 1163-1170. Xu Wanwan, Peng Zhipeng, Liu Jiang, et al.Sub- synchronous oscillation mitigation strategy based on adaptive adjustment of parameters with impedance ratio for direct-drive wind turbines[J].Control Engin- eering, 2023, 30(7): 1163-1170. [24] 王刚, 高本锋, 王晓, 等. 基于滑模控制的直驱风电场次同步振荡抑制策略[J]. 太阳能学报, 2023, 44(4): 163-172. Wang Gang, Gao Benfeng, Wang Xiao, et al.Sub- synchronous oscillation suppression strategy for direct-drive wind farm based on sliding mode control[J]. Acta Solar Energy Sinica, 2023, 44(4): 163-172. [25] 陈淑平. 光伏经LCC-HVDC送出的次同步振荡特性研究[D]. 保定: 华北电力大学, 2022. Chen Shuping.Study on sub-synchronous oscillation characteristics of photovoltaic power station inte- grated with LCC-HVDC system[D]. Baoding: North China Electric Power University, 2022. [26] 高本锋, 王义, 范辉, 等. 基于阻尼路径的新能源经LCC-HVDC送出系统次同步交互作用分析方法[J]. 电工技术学报, 2023, 38(20): 5572-5589. Gao Benfeng, Wang Yi, Fan Hui, et al.A sub- synchronous interaction analysis method of renewable energy generations integrated with LCC-HVDC system based on damping path[J]. Transactions of China Electrotechnical Society, 2019, 38(20): 5572-5589. [27] 高本锋, 董涵枭, 卢亚军, 等. 直驱风电场并网对直流输电引起的火电机组轴系扭振影响机理分析[J]. 电工技术学报, 2024, 39(7): 1971-1984. Gao Benfeng, Dong Hanxiao, Lu Yajun, et al.Mechanism analysis of the influence of direct drive wind farm integration on SSTI of thermal generator caused by LCC-HVDC[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 1971-1984. [28] 董文凯, 任必兴, 王海风, 等. 适用于系统次同步振荡分析的风电场等值建模方法综述[J]. 电力工程技术, 2022, 41(4): 33-43. Dong Wenkai, Ren Bixing, Wang Haifeng, et al.Small-signal equivalent modeling methods of the wind farm and its application in sub-synchronous oscillations analysis of gird-connected wind power systems[J]. Electric Power Engineering Technology, 2022, 41(4): 33-43. [29] 邵冰冰, 赵书强, 裴继坤, 等. 直驱风电场经VSC- HVDC并网的次同步振荡特性分析[J]. 电网技术, 2019, 43(9): 3344-3352. Shao Bingbing, Zhao Shuqiang, Pei Jikun, et al.Subsynchronous oscillation characteristic analysis of grid-connected DDWFS via VSC-HVDC system[J]. Power System Technology, 2019, 43(9): 3344-3352. [30] 郭春义, 宁琳如, 王虹富, 等. 基于开关函数的LCC-HVDC换流站动态模型及小干扰稳定性[J].电网技术, 2017, 41(12): 3862-3868. Guo Chunyi, Ning Linru, Wang Hongfu, et al.Switching-function based dynamic model of LCC- HVDC station and small signal stability analysis[J]. Power System Technology, 2017, 41(12): 3862-3868. [31] 李红, 梁军杨, 王振民, 等. 跟网型变换器的小扰动同步稳定机理分析与致稳控制[J]. 电工技术学报, 2024, 39(12): 3802-3815. Li Hong, Liang Junyang, Wang Zhenmin, et al.Small signal synchronization stability analysis and improved control strategy for grid following converter[J]. Transactions of China Electrotechnical Society, 2024, 39(12): 3802-3815. [32] Yuan Hao, Yuan Xiaoming, Hu Jiabing.Modeling of grid-connected VSCs for power system small-signal stability analysis in DC-link voltage control times- cale[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3981-3991. [33] Kennedy J, Eberhart R.Particle swarm optimi- zation[C]//Proceedings of ICNN'95- International Con- ference on Neural Networks, Perth, WA, Australia, 2002: 1942-1948. [34] Eberhart R, Kennedy J.A new optimizer using particle swarm theory[C]//MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995: 39-43.