Abstract:The isolatedisland microgrid has no large grid support, and the source-load power electronic equipment is strongly interactively coupled, which is prone to stability problems such as high frequency oscillation. In this regard, the impedance reconstruction control method of the isolated island inverter is proposed, which can improve the phase of the output sequence impedance of the isolated island inverter at high frequency, increase system damping and effectively suppress the high frequency oscillation of the system. A small-signal wideband positive and negative sequence impedance model of the off-grid source PWM inverter is established by using the harmonic linearization method. In order to further analyze the interaction stability of the island system, the positive and negative sequence impedance model of the load PWM rectifier is established. Then, according to the established impedance model and Nyquist stability criterion, the influence of control method, load type and load power on the stability of the isolated island microgrid system is analyzed. The essential reason for the high frequency oscillation of the isolated island inverter and the PWM rectifier type load interaction in the island microgrid is revealed: the output impedance of the isolated island inverter is negatively resistive-capacitive at high frequency, and the input impedance of the PWM rectifier type load is Inductive, causing the system impedance ratio not to meet the stability criteria. The proposed impedance reconstruction control method can improve the phase characteristics of the isolated island inverter at high frequencies and increase the stability of the system by adding the voltage feedback branch.Finally, the experiment verifies the correctness of the analysis in this paper.
刘津铭, 陈燕东, 伍文华, 张焜, 罗安. 孤岛微电网序阻抗建模与高频振荡抑制[J]. 电工技术学报, 2020, 35(7): 1538-1552.
Liu Jinming, Yan Dongchen, Wu Wenhua, Zhang Kun, Luo An. Sequence Impedance Modeling and High-Frequency Oscillation Suppression Method for Island Microgrid. Transactions of China Electrotechnical Society, 2020, 35(7): 1538-1552.
[1] 张建华, 史佳琪, 郑德化, 等. 微电网运行与控制IEC标准进展与分析[J]. 电力系统自动化, 2018, 42(24): 1-14. Zhang Jianhua, Shi Jiaqi, Zheng Dehua, et al.Progress and analysis of IEC standards for microgrid operation and control[J].Automation of Electric Power Systems, 2018, 42(24): 1-14. [2] 赵梓杉, 蒙志全, 章雷其, 等. 含异构分布式电源的微电网无功功率分散分层控制策略[J]. 电力系统自动化, 2019, 43(11): 59-72. Zhao Zishan, Meng Zhiquan, Zhang Leiqi, et al.Reactive power decentralized and hierarchical control strategy for microgrids with heterogeneous distributed power sources[J]. Automation of Electric Power Systems, 2019, 43(11): 59-72. [3] 陈杰, 刘名凹, 陈新, 等. 基于下垂控制的逆变器无线并联与环流抑制技术[J]. 电工技术学报, 2018, 33(7): 1450-1460. Chen Jie, Liu Mingwa, Chen Xin, et al.Inverter wireless parallel and circulating current suppression technology based on droop control[J]. Journal of Electrical Engineering and Technology, 2018, 33(7): 1450-1460. [4] 伍文华, 陈燕东, 罗安, 等. 一种直流微网双向并网变换器虚拟惯性控制策略[J]. 中国电机工程学报, 2017, 37(2): 360-371. Wu Wenhua, Chen Yandong, Luo An, et al.A virtual inertia control strategy for bidirectional grid- connected converters in DC micro-grids[J]. Proceedings of the CSEE, 2017, 37(2): 360-371. [5] 刘欣博, 高卓. 考虑恒功率负载与储能单元动态特性的直流微电网系统大信号稳定性分析[J]. 电工技术学报, 2019, 34(增刊1): 292-299. Liu Xinbo, Gao Zhuo.Large signal stability analysis of DC microgrid system considering the dynamic characteristics of constant power load and energy storage unit[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 292-299. [6] 滕昌鹏, 王玉斌, 周博恺, 等. 含恒功率负载的直流微网大信号稳定性分析[J]. 电工技术学报, 2019, 34(5): 973-982. Teng Changpeng, Wang Yubin, Zhou Bokai, et al.Analysis of large signal stability of DC microgrid with constant power load[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 973-982. [7] Cespedes M, Lei Xing, Sun Jian.Constant-power load system stabilization by passive damping[J]. IEEE Transactions on Power Electronics, 2011, 26(7): 1832-1836. [8] 刘宝泉, 郭华, 朱一昕, 等. 三相变流器无源阻尼型LCL滤波器的分析与设计[J]. 电工技术学报, 2017, 32(2): 195-205. Liu Baoquan, Guo Hua, Zhu Yixin, et al.Analysis and design of three-phase converter passive damping LCL filter[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 195-205. [9] 朱晓娟, 胡海涛, 陶海东, 等. 光伏并网系统的谐波不稳定产生机理及影响规律[J]. 电工技术学报, 2017, 32(10): 33-41. Zhu Xiaojuan, Hu Haitao, Tao Haidong, et al.Generation mechanism and influence law of harmonic instability in photovoltaic grid-connected systems[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 33-41. [10] Wu Mingfei, Lu D D C. A novel stabilization method of LC input filter with constant power loads without load performance compromise in DC microgrids[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4552-4562. [11] 郭力, 冯怿彬, 李霞林, 等. 直流微电网稳定性分析及阻尼控制方法研究[J]. 中国电机工程学报, 2016, 36(4): 927-936. Guo Li, Feng Yibin, Li Xialin, et al.Stability analysis and research of active damping method for DC microgrids[J]. Proceedings of the CSEE, 2016, 36(4): 927-936. [12] 胡辉勇, 王晓明, 于淼, 等. 主从控制下直流微电网稳定性分析及有源阻尼控制方法[J]. 电网技术, 2017, 41(8): 2664-2673. Hu Huiyong, Wang Xiaoming, Yu Miao, et al.Stability analysis and active damping control for master-slave controlled DC microgrid[J]. Power System Technology, 2017, 41(8): 2664-2673. [13] Hamzeh M, Ghafouri M, Karimi H, et al.Power oscillations damping in DC microgrids[J]. IEEE Transactions on Energy Conversion, 2016, 31(3): 970-980. [14] 刘晓东, 胡勇, 方炜, 等. 直流微电网节点阻抗特性与系统稳定性分析[J]. 电网技术, 2015, 39(12): 3463-3469. Liu Xiaodong, Hu Yong, Fang Wei, et al.Analysis of node impedance characteristics and stability in DC microgrids[J]. Power System Technology, 2015, 39(12): 3463-3469. [15] 季宇, 王东旭, 吴红斌, 等. 提高直流微电网稳定性的有源阻尼方法[J]. 电工技术学报, 2018, 33(2): 370-379. Ji Yu, Wang Dongxu, Wu Hongbin, et al.The active damping method for improving the stability of DC microgrid[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 370-379. [16] Riccobono A, Santi E.Comprehensive review of stability criteria for DC power distribution systems[J]. IEEE Transactions on Industrial Applications, 2014, 50(5): 3525-3535. [17] Dahono P Y, Bahar Y, Sato Y, et al.Damping of transient oscillations on the output LC filter of PWM inverters by using a virtual resistor[C]//4th IEEE International Conference on Power Electronics and Drive Systems Denpasar, Indonesia, 2001: 403-407. [18] Adapa A, John V.Virtual resistor based active damping of LC filter in standalone voltage source inverter[C]//2018 IEEE Applied Power Electronics Conference and Exposition, San Antonio, USA, 2018: 1834-1840. [19] Singh S, Choudhuri S.Active damping control with a feed forward loop for single-phase UPS inverter system: a comparative study[C]//2015 International Conference on Energy Economics and Environment, Greater Noida, India, 2015: 1-5. [20] Li Yunwei.Control and resonance damping of voltage-sourceand current-source converters with LC filters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(5): 1511-1521. [21] Geng Yiwen, Yun Yang, Chen Ruicheng, et al.Parameters design and optimization for LC-type off-grid inverters with inductor-current feedback active damping[J]. IEEE Transactions on Industrial Electronics, 2018, 33(1): 703-715. [22] Wen Bo, Boroyevich D, Burgos R, et al.Modeling the output impedance of three-phase uninterruptible power supply in d-q frame[C]//2014 IEEE Energy Conversion Congress and Exposition(ECCE), Pennsylvania, USA, 2014: 163-169. [23] Shi Hongtao, Zhuo Fang, Zhang Dong, et al.Modeling, analysis, and measurement of impedance for three-phase AC distributed power system[C]//2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pennsylvania, USA, 2014: 4635-4639. [24] Cespedes M, Sun Jian.Impedance modeling and analysis of grid-connected voltage-source converters[J]. IEEE Transactions on Power Electronics, 29(3): 1254-1261. [25] Wen Bo, Boroyevich D, Burgos R, et al.Analysis of D-Q small-signal impedance of grid-tied inverters[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 675-687. [26] Wen Bo, Boroyevich D, Mattavelli P, et al.Experimental verification of the generalized nyquist stability criterion for balanced three-phase AC systems in the presence of constant power loads[C]//2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, 2012: 3926-3933. [27] Qian Qiang, Xie Shaojun, Huang Liuliu, et al.Harmonic suppression and stability enhancement for parallel multiple grid-connected inverters based on passive inverter output impedance[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7587-7598. [28] 张中锋. 微网逆变器的下垂控制策略研究[D]. 南京: 南京航空航天大学, 2013. [29] Sun Jian.Impedance-based stability criterion for grid-connected inverters[J]. IEEE Transactions on Power Electronics, 2011, 26(11): 3075-3078.