A Review of Synchronization-Stability-Oriented Analysis and Control of Power Electronic Grid-Connected Converters
Huang Meng1,2, . Shu Sirui1,2,3, . Li Xilin1,2, . Fu Xikun1,2, Zha Xiaoming1,2
1. Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy Wuhan 430072 China; 2. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China; 3. State Grid Hubei Electric Power Co.Ltd Economic and Technological Research Institute Wuhan 430000 China
Abstract:With the integration of a large amount of renewable energy generation into the AC power grid through power electronic equipment, the dynamic characteristics of the system are influenced by the multi-timescale control of these electronic devices. The grid-connected converters, operated under various types of controls, exhibit strong nonlinearity and low inertia during operation, posing synchronization stability issues for power grids with a high proportion of renewable energy.Especially when large-scale renewable energydevicesare connected to the weak grid, the multi-time scale and the multi-machine interaction between the devices are easy to cause the stability problem of the grid-connected system. For the grid-following converters, the synchronization stability of PLL under weak grid has received much attention due to the disturbance of the converter terminal voltage. Thegrid-formingconvertershave the risk of instability in strong grid, due the line impedance of resistive characteristics will cause power coupling and multi-machine power oscillation. In the large-disturbance analysis of synchronous stability, the influence of nonlinearity, limiting protection and switching control of grid-following/grid-forming converters is more obvious.The synchronous stability mechanism of the grid-connected converter system under control needs to be further sorted out. This article provides an overview of the research on the synchronization stability of renewable energy grid-connected systems under multi-time scale control. It comprehensively reviews the modeling and stability analysis techniques for grid-connected systems under single-time scale synchronization control, multi-time scale interaction, and multi-machine multi-time scale interaction. Firstly, under the synchronous control time scale, the synchronous stability analysis methods of grid-following and grid-forming converters are summarized. Secondly, The multi-time scale control interaction is mainly embodied in the interaction between synchronization control andvoltage/current loop. The interaction of grid-following converters is particularly significant under the condition of weak grid. The non-negligible interactionis existed between the active and reactive power control loops in the grid-forming converter due to their close time scale.Thirdly, in new energy plants and stations, there is a complex dynamic process of multi-machine multi-time scale interaction. Under the condition of non-ideal weak grid, the interaction between the control loops of multiple grid-connected converters in parallel has synchronous- synchronous control interaction of the same time scale, and the interaction of different time scales between voltage/current loops. On this basis, a construction framework for the synchronization mechanism of renewable energy grid-connected systems is proposed. In the grid-connected converter system with multi-time scale and mass distributed generation, it is not considered in the traditional methods that the deterioration of the overall coordination of the system caused by the dynamic interaction of multi-timescale massive converters. Based on this, a construction framework for the synchronization mechanism of renewable energy grid-connected systems is proposed, considering both global design and distributed implementation of synchronization performance, while taking into account resource and network constraints. The analysis and review of synchronization technology in renewable energy grid-connected systems in this article provide a systematic overview of the current state of research on analysis methods. Moreover, a reliable outlook on the direction of synchronous operation mechanism and method, especially high-order nonlinear system analysis is presented.
黄萌, 舒思睿, 李锡林, 付熙坤, 查晓明. 面向同步稳定性的电力电子并网变流器分析与控制研究综述[J]. 电工技术学报, 2024, 39(19): 5978-5994.
Huang Meng, . Shu Sirui, . Li Xilin, . Fu Xikun, Zha Xiaoming. A Review of Synchronization-Stability-Oriented Analysis and Control of Power Electronic Grid-Connected Converters. Transactions of China Electrotechnical Society, 2024, 39(19): 5978-5994.
[1] 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69. Shu Yinbiao, Chen Guoping, He Jingbo, et al.Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69. [2] 唐王倩云, 周保荣, 胡家兵, 等. 锁相同步型风机-同步机互联电力系统转子转速尺度暂态同步稳定性分析[J]. 中国电机工程学报, 2021, 41(20): 6900-6916. Tang Wangqianyun, Zhou Baorong, Hu Jiabing, et al.Transient synchronous stability of PLL-based wind power-synchronous generation interconnected power system in rotor speed control timescale[J]. Proceedings of the CSEE, 2021, 41(20): 6900-6916. [3] 王成山, 武震, 李鹏. 微电网关键技术研究[J]. 电工技术学报, 2014, 29(2): 1-12. Wang Chengshan, Wu Zhen, Li Peng.Research on key technologies of microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 1-12. [4] NERC Joint and WECC Staff Report. 900 MW Fault Induced Solar Photovoltaic Resource Interruption Disturbance Report[N].NERC Atlanta and GA USA Tech. Rep. , 2018-02. [5] 郑少明, 刘一民, 董鹏, 等. 张北工程风电柔直汇集系统次、超同步振荡分析[J]. 全球能源互联网, 2023, 6(6): 608-617. Zheng Shaoming, Liu Yimin, Dong Peng, et al.Analysis of sub/super-synchronous oscillation between wind farm and MMC in Zhangbei Project[J]. Journal of Global Energy Interconnection, 2023, 6(6): 608-617. [6] 张宇, 蔡旭, 张琛, 等. 并网变换器的暂态同步稳定性研究综述[J]. 中国电机工程学报, 2021, 41(5): 1687-1702. Zhang Yu, Cai Xu, Zhang Chen, et al.Transient synchronization stability analysis of voltage source converters: a review[J]. Proceedings of the CSEE, 2021, 41(5): 1687-1702. [7] Wen Bo, Boroyevich D, Burgos R, et al.Analysis of D-Q small-signal impedance of grid-tied inverters[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 675-687. [8] 朱军, 曲玉博, 刘鹏辉, 等. 电网频率小扰动下虚拟同步发电机统一模型关键参数辨识[J]. 电气技术, 2022, 23(7): 26-33, 41. Zhu Jun, Qu Yubo, Liu Penghui, et al.Identification of key parameters of virtual synchronous generator unified model under small frequency disturbance of power grid[J]. Electrical Engineering, 2022, 23(7): 26-33, 41. [9] Wang Xiongfei, Harnefors L, Blaabjerg F.Unified impedance model of grid-connected voltage-source converters[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 1775-1787. [10] Harnefors L, Wang Xiongfei, Yepes A G, et al.Passivity-based stability assessment of grid-connected VSCs—an overview[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(1): 116-125. [11] Hu Jiabing, Wang Bo, Wang Weisheng, et al.Small signal dynamics of DFIG-based wind turbines during riding through symmetrical faults in weak AC grid[J]. IEEE Transactions on Energy Conversion, 2017, 32(2): 720-730. [12] Göksu Ö, Teodorescu R, Bak C L, et al.Instability of wind turbine converters during current injection to low voltage grid faults and PLL frequency based stability solution[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1683-1691. [13] Dong Dong, Wen Bo, Boroyevich D, et al.Analysis of phase-locked loop low-frequency stability in three- phase grid-connected power converters considering impedance interactions[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 310-321. [14] Zhao Jiantao, Huang Meng, Zha Xiaoming.Nonlinear analysis of PLL damping characteristics in weak-grid-tied inverters[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(11): 2752-2756. [15] 李红, 梁军杨, 王振民, 等. 跟网型变换器的小扰动同步稳定机理分析与致稳控制[J]. 电工技术学报, 2024, 39(12):3802-3815. Li Hong, Liang Junyang, Wang Zhenmin, et al.Small signal synchronization stability analysis and improved control strategy for grid following converter[J]. Transactions of China Electrotechnical Society, 2024, 39(12):3802-3815. [16] Li Yitong, Gu Yunjie, Green T C.Revisiting grid-forming and grid-following inverters: a duality theory[J]. IEEE Transactions on Power Systems, 2022, 37(6): 4541-4554. [17] 谢震, 杨曙昕, 代鹏程, 等. 构网型全功率风电机组网侧变流器耦合分析及抑制策略[J]. 电工技术学报, 2023, 38(14):3745-3758, 3768. Xie Zhen, Yang Shuxin, Dai Pengcheng, et al.Grid-side coupling analysis and suppression strategy of grid-forming full-power wind turbines[J]. Transactions of China Electrotechnical Society, 2023, 38(14): 3745-3758, 3768. [18] 黄萌, 凌扬坚, 耿华, 等. 功率同步控制的构网型变流器多机交互分析与稳定控制研究综述[J]. 高电压技术, 2023, 49(11): 4571-4583. Huang Meng, Ling Yangjian, Geng Hua, et al.An overview on multi-VSCs interaction analysis and stability controls of grid-forming converters with power synchronization control[J]. High Voltage Engineering, 2023, 49(11): 4571-4583. [19] Wu Heng, Wang Xiongfei.Design-oriented transient stability analysis of grid-connected converters with power synchronization control[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6473-6482. [20] Hu Qi, Fu Lijun, Ma Fan, et al.Large signal synchronizing instability of PLL-based VSC connected to weak AC grid[J]. IEEE Transactions on Power Systems, 2019, 34(4): 3220-3229. [21] Choopani M, Hosseinian S H, Vahidi B.New transient stability and LVRT improvement of multi- VSG grids using the frequency of the center of inertia[J]. IEEE Transactions on Power Systems, 2020, 35(1): 527-538. [22] Sun Jian, Wang Guoning, Du Xiong, et al.A theory for harmonics created by resonance in converter-grid systems[J]. IEEE Transactions on Power Electronics, 2019, 34(4): 3025-3029. [23] Rygg A, Molinas M, Zhang Chen, et al.On the equivalence and impact on stability of impedance modeling of power electronic converters in different domains[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(4): 1444-1454. [24] 辛焕海, 李子恒, 董炜, 等. 三相变流器并网系统的广义阻抗及稳定判据[J]. 中国电机工程学报, 2017, 37(5): 1277-1293. Xin Huanhai, Li Ziheng, Dong Wei, et al.Generalized-impedance and stability criterion for grid-connected converters[J]. Proceedings of the CSEE, 2017, 37(5): 1277-1293. [25] Xu Luyao, Xin Huanhai, Huang Linbin, et al.Symmetric admittance modeling for stability analysis of grid-connected converters[J]. IEEE Transactions on Energy Conversion, 2020, 35(1): 434-444. [26] Zhao Jiantao, Huang Meng, Yan Han, et al.Nonlinear and transient stability analysis of phase-locked loops in grid-connected converters[J]. IEEE Transactions on Power Electronics, 2021, 36(1): 1018-1029. [27] Fu Xikun, Sun Jianjun, Huang Meng, et al.Large-signal stability of grid-forming and grid- following controls in voltage source converter: a comparative study[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7832-7840. [28] 李锡林, 查晓明, 田震, 等. 频率突变影响下基于Lyapunov法的孤岛微电网暂态稳定性分析[J]. 电工技术学报, 2023, 38(增刊1): 18-31. Li Xilin, Zha Xiaoming, Tian Zhen, et al.lyapunov based transient stability analysis of islanded microgrid under the influence of frequency abrupt change[J]. Transactions of China Electrotechnical Society, 2023, 38(S1): 18-31. [29] Tian Zhen, Tang Yingjie, Zha Xiaoming, et al.Hamilton-based stability criterion and attraction region estimation for grid-tied inverters under large-signal disturbances[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(1): 413-423. [30] Zhang Yu, Zhang Chen, Cai Xu.Large-signal grid-synchronization stability analysis of PLL-based VSCs using Lyapunov’s direct method[J]. IEEE Transactions on Power Systems, 2022, 37(1): 788-791. [31] Ma Rui, Li Jinxin, Kurths J, et al.Generalized swing equation and transient synchronous stability with PLL-based VSC[J]. IEEE Transactions on Energy Conversion, 2022, 37(2): 1428-1441. [32] Zhang Chen, Cai Xu, Rygg A, et al.Modeling and analysis of grid-synchronizing stability of a Type-IV wind turbine under grid faults[J]. International Journal of Electrical Power & Energy Systems, 2020, 117: 105544. [33] 张琛, 蔡旭, 李征. 全功率变换风电机组的暂态稳定性分析[J]. 中国电机工程学报, 2017, 37(14): 4018-4026, 4280. Zhang Chen, Cai Xu, Li Zheng.Transient stability analysis of wind turbines with full-scale voltage source converter[J]. Proceedings of the CSEE, 2017, 37(14): 4018-4026, 4280. [34] He Xiuqiang, Geng Hua, Li Ruiqi, et al.Transient stability analysis and enhancement of renewable energy conversion system during LVRT[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1612-1623. [35] 许诘翊, 刘威, 刘树, 等. 电力系统变流器构网控制技术的现状与发展趋势[J]. 电网技术, 2022, 46(9): 3586-3595. Xu Jieyi, Liu Wei, Liu Shu, et al.Current state and development trends of power system converter grid-forming control technology[J]. Power System Technology, 2022, 46(9): 3586-3595. [36] 熊小玲, 李昕悦, 周琰, 等. 基于陷波器的构网型换流器同步频率谐振抑制策略[J]. 电工技术学报, 2024, 39(12):3827-3839. Xiong Xiaoling, Li Xinyue, Zhou Yan, et al.Synchronous frequency resonance suppression of grid-forming converter based on notch filter[J]. Transactions of China Electrotechnical Society, 2024, 39(12):3827-3839. [37] Wang Xiongfei, Taul M G, Wu Heng, et al.Grid-synchronization stability of converter-based resources—an overview[J]. IEEE Open Journal of Industry Applications, 2020, 1: 115-134. [38] Wang Shike, Liu Zeng, Liu Jinjun, et al.Small-signal modeling and stability prediction of parallel droop-controlled inverters based on terminal characteristics of individual inverters[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 1045-1063. [39] Guillaume D.From grid-following to grid-forming: the new strategy to build 100% power-electronics interfaced transmission system with enhanced transient behavior[D]. Lille: Ecole Centrale de Lille, 2017. [40] Zhang Lidong, Harnefors L, Nee H P.Power- synchronization control of grid-connected voltage- source converters[J]. IEEE Transactions on Power Systems, 2010, 25(2): 809-820. [41] Wang Jinhua, Wang Yuxiang, GuYunjie, et al. Synchronous frequency resonance of virtual synchronous generators and damping control[C]// 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea (South), 2015: 1011-1016. [42] Shuai Zhikang, Shen Chao, Liu Xuan, et al.Transient angle stability of virtual synchronous generators using Lyapunov’s direct method[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 4648-4661. [43] Yang Jingxi, Tse C K, Huang Meng, et al.Homoclinic bifurcation of a grid-forming voltage source converter[J]. IEEE Transactions on Power Electronics, 2021, 36(11): 13176-13187. [44] Cespedes M, Sun Jian.Impedance modeling and analysis of grid-connected voltage-source converters[J]. IEEE Transactions on Power Electronics, 2014, 29(3): 1254-1261. [45] 王思成, 袁小明. 基于内电势幅值/频率和网络有功/无功电流工作点的变换器并网交流系统小扰动线性化方法[J]. 中国电机工程学报, 2024, 44(3): 1081-1094. Wang Sicheng, Yuan Xiaoming.Small-disturbance linearization method for converter interfaced AC power systems based on operating points of internal-voltage amplitude/frequency and networks' active/ reactive current[J]. Proceedings of the CSEE, 2024, 44(3): 1081-1094. [46] Liu C C, Yang Jingxi, Tse C K, et al.Transient synchronization stability of grid-following converters considering nonideal current loop[J]. IEEE Transactions on Power Electronics, 2023, 38(11): 13757-13769. [47] Hu Qi, Fu Lijun, Ma Fan, et al.Analogized synchronous-generator model of PLL-based VSC and transient synchronizing stability of converter dominated power system[J]. IEEE Transactions on Sustainable Energy, 2021, 12(2): 1174-1185. [48] 张梓钦, 朱东海, 马玉梅, 等. 弱电网故障下新能源并网变换器的奇异摄动模型与暂态稳定性分析[J]. 中国电机工程学报, 2023, 43(2): 454-466. Zhang Ziqin, Zhu Donghai, Ma Yumei, et al.Singular perturbation model and transient stability analysis of grid-connected converter under weak grid faults[J]. Proceedings of the CSEE, 2023, 43(2): 454-466. [49] Wu Tianhao, Jiang Qirong, Huang Meng, et al.Synchronization stability of grid-following converters governed by saturation nonlinearities[J]. IEEE Transactions on Power Systems, 2022, 37(5): 4102-4105. [50] Rokrok E, Qoria T, Bruyere A, et al.Transient stability assessment and enhancement of grid-forming converters embedding current reference saturation as current limiting strategy[J]. IEEE Transactions on Power Systems, 2022, 37(2): 1519-1531. [51] Taul M G, Wang Xiongfei, Davari P, et al.Current limiting control with enhanced dynamics of grid-forming converters during fault conditions[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1062-1073. [52] 刘航, 王跃, 刘永慧, 等. 基于定量设计虚拟阻抗的VSG低电压穿越策略[J]. 高电压技术, 2022, 48(1): 245-256. Liu Hang, Wang Yue, Liu Yonghui, et al.The LVRT strategy for VSG based on the quantitatively designed virtual impedance[J]. High Voltage Engineering, 2022, 48(1): 245-256. [53] 葛平娟, 肖凡, 涂春鸣, 等. 考虑故障限流的下垂控制型逆变器暂态控制策略[J]. 电工技术学报, 2022, 37(14):3676-3687. GePingjuan, Xiao Fan, Tu Chunming, et al. Transient control strategy of droop-controlled inverter considering fault current limitation[J]. Transactions of China Electrotechnical Society, 2022, 37(14):3676-3687. [54] Liu Yushuang, Geng Hua, Huang Meng, et al.Dynamic current limiting of grid-forming converters for transient synchronization stability enhancement[J]. IEEE Transactions on Industry Applications, 2024, 60(2): 2238-2248. [55] Huang Yunhui, Yuan Xiaoming, Hu Jiabing, et al.DC-bus voltage control stability affected by AC-bus voltage control in VSCs connected to weak AC grids[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(2): 445-458. [56] Wang Dong, Liang Liang, Shi Lei, et al.Analysis of modal resonance between PLL and DC-link voltage control in weak-grid tied VSCs[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1127-1138. [57] Luo Cheng, Liu Teng, Wang Xiongfei, et al.Design-oriented analysis of DC-link voltage control for transient stability of grid-forming inverters[J]. IEEE Transactions on Industrial Electronics, 2024, 71(4): 3698-3707. [58] 洪镇堃, 占萌. 构网型变流器并网系统在强弱电网下的分岔分析[J]. 电力自动化设备, 2023, 43(9): 27-32, 54. Hong Zhenkun, Zhan Meng.Bifurcation analysis of grid-forming converter system connected with stiff or weak AC grids[J]. Electric Power Automation Equipment, 2023, 43(9): 27-32, 54. [59] 姜鑫, 易皓, 卓放, 等. 基于直流电压同步的构网型变流器低频振荡分析与阻尼控制[J]. 电力系统自动化, 2024, 48(16): 30-39. Jiang Xin, Yi Hao, Zhuo Fang, et al.Low-frequency oscillation analysis and damping control of grid-based converter based on DC voltage synchronization[J]. Automation of Electric Power Systems, 2024, 48(16): 30-39. [60] HuangLinbin, Xin Huanhai, Li Zhiyi, et al. Grid-synchronization stability analysis and loop shaping for PLL-based power converters with different reactive power control[J]. IEEE Transactions on Smart Grid, 2020, 11(1): 501-516. [61] Pan Donghua, Wang Xiongfei, Liu Fangcheng, et al.Transient stability of voltage-source converters with grid-forming control: a design-oriented study[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1019-1033. [62] 付熙坤, 黄萌, 凌扬坚, 等. 功率耦合和电流限幅影响下构网型变流器的暂态同步稳定分析[J]. 中国电机工程学报, 2024, 44(7): 2815-2024. Fu Xikun, Huang Meng, Ling Yangjian, et al.Transient synchronization stability analysis of grid-forming converterinfluenced by power-coupling and current-limiting[J]. Proceedings of the CSEE, 2024, 44(7): 2815-2024. [63] He Xiuqiang, Pan Sisi, Geng Hua.Transient stability of hybrid power systems dominated by different types of grid-forming devices[J]. IEEE Transactions on Energy Conversion, 2022, 37(2): 868-879. [64] Chen Shiyue, Yao Jun, Liu Yuan, et al.Coupling mechanism analysis and transient stability assessment for multiparalleled wind farms during LVRT[J]. IEEE Transactions on Sustainable Energy, 2021, 12(4): 2132-2145. [65] Fu Xikun, Huang Meng, Pan Shangzhi, et al.Cascading synchronization instability in multi-VSC grid-connected system[J]. IEEE Transactions on Power Electronics, 2022, 37(7): 7572-7576. [66] Hou Xiaochao, Sun Yao, Zhang Xin, et al.Improvement of frequency regulation in VSG-based AC microgrid via adaptive virtual inertia[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 1589-1602. [67] 于彦雪, 马慧敏, 陈晓光, 等. 弱电网下基于准静态模型的混合控制微电网逆变器同步稳定性研究[J]. 电工技术学报, 2022, 37(1): 152-164. Yu Yanxue, Ma Huimin, Chen Xiaoguang, et al.Synchronous stability research of inverters in hybrid microgrid based on the quasi-static models under weak grid[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 152-164. [68] Shen Chao, Shuai Zhikang, Shen Yang, et al.Transient stability and current injection design of paralleled current-controlled VSCs and virtual synchronous generators[J]. IEEE Transactions on Smart Grid, 2021, 12(2): 1118-1134. [69] Cheng Huijie, Shuai Zhikang, Shen Chao, et al.Transient angle stability of paralleled synchronous and virtual synchronous generators in islanded microgrids[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8751-8765. [70] Huang Linbin, Wang Dan, Wang Xiongfei, et al.Gain and phase: decentralized stability conditions for power electronics-dominated power systems[J]. IEEE Transactions on Power Systems, 2024, Gain and phase: decentralized stability conditions for power electronics-dominated power systems[J]. IEEE Transactions on Power Systems, 2024, http://doi.org/ 10.48550/arxiv.2309.0837. [71] Gu Yunjie, Li Yitong, Zhu Yue, et al.Impedance-based whole-system modeling for a composite grid via embedding of frame dynamics[J]. IEEE Transactions on Power Systems, 2021, 36(1): 336-345. [72] Tian Zhen, Li Xilin, Zha Xiaoming, et al.Transient synchronization stability of an islanded AC microgrid considering interactions between grid-forming and grid-following converters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(4): 4463-4476. [73] 黄森, 姚骏, 钟勤敏, 等. 含跟网和构网型新能源发电单元的混联电力系统暂态同步稳定分析[J/OL]. 中国电机工程学报, 1-14[2024-09-25]. http://kns.cnki.net/kcms/detail/11.2107.TM.20230801. 1732.002.html. Huang Sen, Yao Jun, Zhong Qinmin, et al.Transient synchronization stability analysis of hybrid power system with grid-following and grid-forming renewable energy generation units[J]. Proceedings of the CSEE, 1-14[2024-09-25]. Transient synchronization stability analysis of hybrid power system with grid-following and grid-forming renewable energy generation units[J]. Proceedings of the CSEE, 1-14[2024-09-25]. http://kns.cnki.net/kcms/ detail/11.2107.TM.20230801.1732.002.html. [74] 杨子千. 直流电压时间尺度下电压源型变换器并网系统同步稳定建模与分析[D]. 武汉: 华中科技大学, 2022. Yang Ziqian.Synchronization stability modeling and analysis of VSC-tied systems under DC-link voltage timescale[D]. Wuhan: Huazhong University of Science and Technology, 2022. [75] Yuan Hao, Yuan Xiaoming, Hu Jiabing.Modeling of grid-connected VSCs for power system small-signal stability analysis in DC-link voltage control time scale[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3981-3991. [76] Yu Jiajun, Wang Shike, Liu Zeng, et al.Accurate small-signal terminal characteristic model and SISO stability analysis approach for parallel grid-forming inverters in islanded microgrids[J]. IEEE Transactions on Power Electronics, 2023, 38(5): 6597-6612. [77] 易相彤, 黄文, 沈超, 等. 锁相环同步型变流器并联系统暂态同步稳定分析[J]. 中国电机工程学报, 2022, 42(17): 6338-6347. Yi Xiangtong, Huang Wen, Shen Chao, et al.Transient synchronization stability analysis of paralleled converter systems with phase-locked loop[J]. Proceedings of the CSEE, 2022, 42(17): 6338-6347. [78] He Xiuqiang, Geng Hua.PLL synchronization stability of grid-connected multiconverter systems[J]. IEEE Transactions on Industry Applications, 2022, 58(1): 830-842. [79] Gong Hong, Wang Xiongfei, Harnefors L.Rethinking current controller design for PLL-synchronized VSCs in weak grids[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 1369-1381. [80] 张美清, 袁小明, 胡家兵. 基于自稳/致稳性的路径级数展开方法及其在含多样化电力电子装备电力系统稳定性分析中的应用[J]. 中国电机工程学报, 2021, 41(5): 1637-1655. Zhang Meiqing, Yuan Xiaoming, Hu Jiabing.Path series expansion method based on self-/en-stabilizing properties and its application in the stability analysis of power systems with diversified power electronic devices[J]. Proceedings of the CSEE, 2021, 41(5): 1637-1655. [81] FuXikun, Huang Meng, Tse C K, et al. Synchronization stability of grid-following VSC considering interactions of inner current loop and parallel-connected converters[J]. IEEE Transactions on Smart Grid, 2023, 14(6): 4230-4241. [82] 杨晖, 袁小明. 电力系统机电动态过程中时变幅频内电势激励下的功率特性[J]. 中国电机工程学报, 2021, 41(9): 3079-3090. Yang Hui, Yuan Xiaoming.Power characteristics with excitation of time-varying amplitude-frequency internal voltages during electromechanical dynamic process in power systems[J]. Proceedings of the CSEE, 2021, 41(9): 3079-3090. [83] Bianchi F D, Domnguez-Garca J L. Coordinated frequency control using MT-HVDC grids with wind power plants[J]. IEEE Transactions on Sustainable Energy, 2016, 7(1): 213-220. [84] 刘永辉, 张国澎, 孙新迪, 等. 基于PCS变主从协同控制的微电网平滑离网技术[J]. 电气工程学报, 2023, 18(4): 310-319. Liu Yonghui, Zhang Guopeng, Sun Xindi, et al.Microgrid smooth off grid technology based on PCS variable master-slave cooperative control[J]. Journal of Electrical Engineering, 2023, 18(4): 310-319. [85] 余墨多, 黄文焘, 邰能灵, 等. 逆变型分布式电源并网运行暂态稳定机理与评估方法[J]. 电工技术学报, 2022, 37(10):2596-2610. Yu Moduo, Huang Wentao, Tai Nengling, et al.Transient stability mechanism and judgment for inverter interfaced distributed generators connected with public grids[J]. Transactions of China Electrotechnical Society, 2022, 37(10):2596-2610. [86] 刘子文, 苗世洪, 范志华, 等. 基于自适应下垂特性的孤立直流微电网功率精确分配与电压无偏差控制策略[J]. 电工技术学报, 2019, 34(4): 795-806. Liu Ziwen, Miao Shihong, Fan Zhihua, et al.Accurate power allocation and zero steady-state error voltage control of the islanding DC microgird based on adaptive droop characteristics[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 795-806. [87] 谢沁园, 王瑞田, 林克文, 等. 基于端口电压积分与变下垂系数的逆变器并联下垂控制策略[J]. 电工技术学报, 2023, 38(6):1596-1607. XieQinyuan, Wang Ruitian, Lin Kewen, et al. Droop control strategy of parallel lnverters based on port voltage integration and variable droop coefficient[J]. Transactions of China Electrotechnical Society, 2023, 38(6):1596-1607. [88] 方红伟, 陶月, 肖朝霞, 等. 并网逆变器并联系统的鲁棒控制与环流分析[J]. 电工技术学报, 2017, 32(18): 248-258. Fang Hongwei, Tao Yue, Xiao Zhaoxia, et al.Robust control and circulating current analysis for grid- connected parallel inverters[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 248-258. [89] Colombino M, Groß D, Brouillon J S, et al.Global phase and magnitude synchronization of coupled oscillators with application to the control of grid-forming power inverters[J]. IEEE Transactions on Automatic Control, 2019, 64(11): 4496-4511. [90] Seo G S, Colombino M, Subotic I, et al.Dispatchable virtual oscillator control for decentralized inverter- dominated power systems: analysis and experiments[C]//2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019: 561-566. [91] Milano Federico.Complex frequency[J]. IEEE Transa-ctions on Power Systems, 2022, 37(2): 1230-1240. [92] He Xiuqiang, Häberle V, Subotić I, et al.Nonlinear stability of complex droop control in converter-based power systems[J]. IEEE Control Systems Letters, 2023, 7: 1327-1332. [93] 钟万勰. 参变量变分原理及其在工程中的应用[M]. 北京: 科学出版社,1997.