Abstract:As a grid-forming inverter, the inverter based on virtual synchronous generator (VSG) control can contribute to the regulation of grid voltage and frequency. Power systems with a high penetration of new energy sources and power electronics are prone to stability when applied with VSG-controlled inverters. However, the switched oscillation induced by the saturation of limiters in the grid-connected inverter based on VSG control under large disturbances can threaten the stability of the power system. This paper studies the mechanism of such switched oscillations. The effects of limiter type, limiter value, and system parameters on the switched oscillation are also analyzed. Firstly, the switched oscillation and non-smooth bifurcation theory are introduced, as well as the VSG-controlled inverter and its limiters. Secondly, the switched oscillation in the VSG-controlled inverter under large disturbances is analyzed in terms of time-domain waveforms and amplitude-frequency characteristics, According to phase diagrams, the switched oscillation is essentially induced by the non-smooth bifurcation. Thirdly, the relationship between non-smooth bifurcation and limiter type and limiter value is analyzed. Non-smooth bifurcation is induced by the saturation of multiple limiters. Finally, the effects of VSG control parameters and external parameters on the non-smooth bifurcation characteristics are analyzed. The results show that the switched oscillation is more likely to occur with smaller limiter values and larger disturbances. Simulation results show that the power oscillation occurs in the VSG-controlled inverter with limiters under a symmetrical short-circuit fault with a dominant oscillation frequency of 0.36 Hz. The phase diagram during the power oscillation shows that a non-smooth limit cycle occurs, and the C-bifurcation essentially induces the switched oscillation according to the trajectory evolution. Non-smooth bifurcations may occur when both current and modulation signal limiters are included. In addition, as the parameter values are varied, the transition between the equilibrium point and the non-smooth limit cycle occurs, and the oscillation amplitude and frequency are also varied. The following conclusions can be drawn. (1) Under large disturbances, the switched oscillation may occur in the VSG-controlled inverter with limiters saturated, which is essentially induced by the non-smooth bifurcation. Switched oscillation is an important instability form for the grid-forming inverter, and its mechanism and influencing factors are more complex than the traditional transient synchronous instability. (2) The non-smooth bifurcation in the VSG-controlled inverter results from the saturation of current and modulation signal limiters, and the angular frequency limiter affects the power oscillation characteristics. (3) The switched oscillation is more likely to occur with smaller limiter values and larger disturbances. Furthermore, the SCR and droop coefficients are critical parameters affecting the oscillation amplitude and frequency, respectively.
纪君奇, 杨黎晖, 马西奎. 基于虚拟同步发电机控制的并网逆变器切换型振荡及其非光滑分岔特性[J]. 电工技术学报, 2024, 39(24): 7860-7873.
Ji Junqi, Yang Lihui, Ma Xikui. Switched Oscillation and Its Non-Smooth Bifurcation Characteristics in Grid-Connected Inverter Based on Virtual Synchronous Generator Control. Transactions of China Electrotechnical Society, 2024, 39(24): 7860-7873.
[1] 高本锋, 王义, 范辉, 等. 基于阻尼路径的新能源经LCC-HVDC送出系统次同步交互作用分析方法[J]. 电工技术学报, 2023, 38(20): 5572-5589. Gao Benfeng, Wang Yi, Fan Hui, et al.A sub-synchronous interaction analysis method of renewable energy generations integrated with LCC-HVDC system based on damping path[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5572-5589. [2] 马富艺龙, 辛焕海, 刘晨曦, 等. 新能源基地柔性直流送出系统小扰动电压支撑强度评估[J]. 电工技术学报, 2023, 38(21): 5758-5770. Ma Fuyilong, Xin Huanhai, Liu Chenxi, et al.Small-disturbance system voltage support strength assessment method for renewables VSC-HVDC delivery system[J]. Transactions of China Electro-technical Society, 2023, 38(21): 5758-5770. [3] 谢震, 杨曙昕, 代鹏程, 等. 构网型全功率风电机组网侧变流器耦合分析及抑制策略[J]. 电工技术学报, 2023, 38(14): 3745-3758. Xie Zhen, Yang Shuxin, Dai Pengcheng, et al.Grid-side coupling analysis and suppression strategy of grid-forming full-power wind turbines[J]. Transa-ctions of China Electrotechnical Society, 2023, 38(14): 3745-3758. [4] 高磊, 吕敬, 马骏超, 等. 基于电路等效的并网逆变器失稳分析与稳定控制[J]. 电工技术学报, 2024, 39(8): 2325-2341. Gao Lei, Lü Jing, Ma Junchao, et al.Instability analysis and stability control of grid-connected inverter based on impedance circuit equivalent[J]. Transactions of China Electrotechnical Society, 2024, 39(8): 2325-2341. [5] 胡正阳, 高丙团, 张磊, 等. 风电机组双向支撑能力分析与自适应惯量控制策略[J]. 电工技术学报, 2023, 38(19): 5224-5240. Hu Zhengyang, Gao Bingtuan, Zhang Lei, et al.Bidirectional support capability analysis and adaptive inertial control strategy of wind turbine[J]. Transa-ctions of China Electrotechnical Society, 2023, 38(19): 5224-5240. [6] 李锡林, 查晓明, 田震, 等. 频率突变影响下基于Lyapunov法的孤岛微电网暂态稳定性分析[J]. 电工技术学报, 2023, 38(增刊1): 18-31, 55. Li Xilin, Zha Xiaoming, Tian Zhen, et al.Transient stability analysis of islanded microgrid under the influence of frequency mutation based on Lyapunov method[J]. Transactions of China Electrotechnical Society, 2023, 38(S1): 18-31, 55. [7] Zhong Qingchang, Weiss G.Synchronverters: inver-ters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267. [8] 郑天文, 陈来军, 陈天一, 等. 虚拟同步发电机技术及展望[J]. 电力系统自动化, 2015, 39(21): 165-175. Zheng Tianwen, Chen Laijun, Chen Tianyi, et al.Review and prospect of virtual synchronous generator technologies[J]. Automation of Electric Power Systems, 2015, 39(21): 165-175. [9] 吕志鹏, 盛万兴, 刘海涛, 等. 虚拟同步机技术在电力系统中的应用与挑战[J]. 中国电机工程学报, 2017, 37(2): 349-360. Lü Zhipeng, Sheng Wanxing, Liu Haitao, et al.Application and challenge of virtual synchronous machine technology in power system[J]. Proceedings of the CSEE, 2017, 37(2): 349-360. [10] 曹炜, 钦焕乘, 陆建忠, 等. 新型电力系统下虚拟同步机的定位和应用前景展望[J]. 电力系统自动化, 2023, 47(4): 190-207. Cao Wei, Qin Huancheng, Lu Jianzhong, et al.Orientation and application prospect of virtual synchronous generator in new power system[J]. Automation of Electric Power Systems, 2023, 47(4): 190-207. [11] Rosso R, Wang Xiongfei, Liserre M, et al.Grid-forming converters: control approaches, grid-synchronization, and future trends-a review[J]. IEEE Open Journal of Industry Applications, 2021, 2: 93-109. [12] Li Yitong, Gu Yunjie, Green T C.Revisiting grid-forming and grid-following inverters: a duality theory[J]. IEEE Transactions on Power Systems, 2022, 37(6): 4541-4554. [13] 于彦雪, 关万琳, 陈晓光, 等.基于序阻抗的虚拟同步机同步频率谐振现象[J]. 电工技术学报, 2022, 37(10): 2584-2595. Yu Yanxue, Guan Wanlin, Chen Xiaoguang, et al.Synchronous frequency resonance in virtual syn-chronous generator based on sequence-impedance[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2584-2595. [14] Zhou Xinyi, Cheng Shu, Wu Xun, et al.Influence of photovoltaic power plants based on VSG technology on low frequency oscillation of multi-machine power systems[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 5376-5384. [15] 薛翼程, 张哲任, 徐政, 等. 构网型变流器对交流系统低频振荡的影响分析与阻尼控制[J]. 电力系统自动化, 2023, 47(16): 103-113. Xue Yicheng, Zhang Zheren, Xu Zheng, et al.Impact analysis and damping control of grid-forming con-verter for low-frequency oscillation of AC system[J]. Automation of Electric Power Systems, 2023, 47(16): 103-113. [16] 韩应生, 孙海顺, 秦世耀, 等. 电压源型双馈风电并网系统小扰动低频稳定性分析[J]. 电工技术学报, 2023, 38(5): 1312-1324, 1374. Han Yingsheng, Sun Haishun, Qin Shiyao, et al.Low-frequency stability analysis of voltage-sourced doubly-fed wind power grid-connected system under small disturbance[J]. Transactions of China Electro-technical Society, 2023, 38(5): 1312-1324, 1374. [17] 马也, 史丽萍, 李衡, 等. 基于VSG控制的微网逆变器工频振荡现象研究[J]. 电力系统保护与控制, 2022, 50(1): 107-115. Ma Ye, Shi Liping, Li Heng, et al.Power frequency oscillation of a microgrid inverter based on VSG control[J]. Power System Protection and Control, 2022, 50(1): 107-115. [18] 兰征, 刘祖潭, 何东, 等. 基于暂态电磁功率补偿的VSG并联系统有功振荡抑制策略[J]. 电网技术, 2023, 47(1): 23-33. Lan Zheng, Liu Zutan, He Dong, et al.Active oscillation suppression strategy of paralleled virtual synchronous generators based on transient electro-magnetic power compensation[J]. Power System Technology, 2023, 47(1): 23-33. [19] 姜卫同, 胡鹏飞, 尹瑞, 等. 基于虚拟同步机的变流器暂态稳定分析及混合同步控制策略[J]. 电力系统自动化, 2021, 45(22): 124-133. Jiang Weitong, Hu Pengfei, Yin Rui, et al.Transient stability analysis and hybrid synchronization control strategy of converter based on virtual synchronous generator[J]. Automation of Electric Power Systems, 2021, 45(22): 124-133. [20] 葛平娟, 肖凡, 涂春鸣, 等. 考虑故障限流的下垂控制型逆变器暂态控制策略[J]. 电工技术学报, 2022, 37(14): 3676-3687. Ge Pingjuan, Xiao Fan, Tu Chunming, et al.Transient control strategy of droop-controlled inverter con-sidering fault current limitation[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3676-3687. [21] 薛安成, 王嘉伟, 刘晓博, 等. 电力系统超低频频率振荡机理分析与抑制研究现状与展望[J]. 中国电机工程学报, 2021, 41(2): 553-568. Xue Ancheng, Wang Jiawei, Liu Xiaobo, et al.Survey and prospect of ultra-low frequency oscillation mechanism analysis and suppression in power system[J]. Proceedings of the CSEE, 2021, 41(2): 553-568. [22] 薛安成, 汪云涛, 乔登科, 等. 并网VSC系统正阻尼时的一类切换型振荡分析[J]. 电力自动化设备, 2022, 42(6): 84-89. Xue Ancheng, Wang Yuntao, Qiao Dengke, et al.Analysis on category of switched oscillation for grid-connected VSC system with positive damping[J]. Electric Power Automation Equipment, 2022, 42(6): 84-89. [23] 薛安成, 付潇宇, 王嘉伟, 等. 单边限幅参与的并网VSC系统次同步振荡近似分析[J]. 电网技术, 2022, 46(2): 750-758. Xue Ancheng, Fu Xiaoyu, Wang Jiawei, et al.Approximate analysis of sub-synchronous oscillation for grid-connected VSC system induced by unilateral limit[J]. Power System Technology, 2022, 46(2): 750-758. [24] 薛安成, 王嘉伟. 基于非光滑分岔的单机水电系统超低频频率振荡机理分析[J]. 电工技术学报, 2020, 35(7): 1489-1497. Xue Ancheng, Wang Jiawei.Mechanism analysis of ultra-low frequency oscillation of single hydropower system based on non-smooth bifurcation[J]. Transa-ctions of China Electrotechnical Society, 2020, 35(7): 1489-1497. [25] 薛安成, 王子哲, 付潇宇, 等. 基于非光滑分叉的直驱风机次同步振荡机理分析[J]. 电力系统自动化, 2020, 44(7): 87-92. Xue Ancheng, Wang Zizhe, Fu Xiaoyu, et al.Mechanism analysis of subsynchronous oscillation in direct-driven wind turbine based on non-smooth bifurcation[J]. Automation of Electric Power Systems, 2020, 44(7): 87-92. [26] 薛安成, 王永杰, 付潇宇, 等. 含SVG的双馈系统切换型次同步振荡及其非光滑分岔特性分析[J]. 电网技术, 2021, 45(3): 918-926. Xue Ancheng, Wang Yongjie, Fu Xiaoyu, et al.Analysis of switched subsynchronous oscillation and its non-smooth bifurcation characteristics in doubly-fed system with SVG[J]. Power System Technology, 2021, 45(3): 918-926. [27] 王嘉伟, 熊鸿韬, 刘晓博, 等. 大扰动后正阻尼单机水电系统频率振荡的近似及适应性分析[J]. 电力自动化设备, 2022, 42(12): 145-150. Wang Jiawei, Xiong Hongtao, Liu Xiaobo, et al.Approximation and adaptability analysis of frequency oscillation in single hydromachine power system with positive damping after large disturbance[J]. Electric Power Automation Equipment, 2022, 42(12): 145-150. [28] Xu Yanhui, Cheng Yundan, Liu Hui, et al.Study on HOPF bifurcation types and dominant parameters of grid-connected voltage source converter considering non-linear saturation elements[J]. IET Renewable Power Generation, 2023, 17(8): 2124-2136. [29] Xu Yanhui, Gu Zheng, Sun Kai.Characterization of subsynchronous oscillation with wind farms using describing function and generalized nyquist criterion[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2783-2793. [30] Shuai Zhikang, Shen Chao, Yin Xin, et al.Fault analysis of inverter-interfaced distributed generators with different control schemes[J]. IEEE Transactions on Power Delivery, 2018, 33(3): 1223-1235. [31] Leine R I, van Campen D H. Bifurcation phenomena in non-smooth dynamical systems[J]. European Journal of Mechanics-A/Solids, 2006, 25(4): 595-616. [32] Nusse H E, Yorke J A.Border-collision bifurcations for piecewise smooth one-dimensional maps[J]. International Journal of Bifurcation and Chaos, 1995, 5(1): 189-207. [33] Di B M, Feigin M I, Hogan S J, et al.Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems[J]. Chaos Solitons & Fractals, 1999, 10(11): 1881-1908. [34] di Bernardo M, Kowalczyk P, Nordmark A. Bifurcations of dynamical systems with sliding: derivation of normal-form mappings[J]. Physica D: Nonlinear Phenomena, 2002, 170(3/4): 175-205. [35] 黄林彬, 章雷其, 辛焕海, 等. 下垂控制逆变器的虚拟功角稳定机理分析[J]. 电力系统自动化, 2016, 40(12): 117-123, 150. Huang Linbin, Zhang Leiqi, Xin Huanhai, et al.Mechanism analysis of virtual power angle stability in droop-controlled inverters[J]. Automation of Electric Power Systems, 2016, 40(12): 117-123, 150. [36] Saffar K G, Driss S, Ajaei F B.Impacts of current limiting on the transient stability of the virtual synchronous generator[J]. IEEE Transactions on Power Electronics, 2023, 38(2): 1509-1521.