Abstract:Back-to-back starting is a traditional starting method for large-capacity synchronous motors, but it needs two additional physical machines, and the operation process is quite complex. In order to solve this problem, a modified back-to-back starting approach for large-capacity synchronous motors based on virtual synchronous generator (VSG) technology is proposed in this paper. The cascaded H-bridge converter (CHB) controlled as a VSG is used to replace the prime mover and synchronous generator of conventional system. In the new starting system, the problems of original system are solved, and the initial relative angle between the machines and the damping torque of VSG become controllable. Furthermore, the added sensorless speed controller makes the speed controlled more accurate. The feasibility of promoting the growth of mechanical torque or retarding the growth of damping torque to accelerate the starting process is also studied when considering the system stability. The effectiveness of the proposed modified back-to-back starting method is verified by the hardware-in-loop experimental results.
陶亮, 孙建军, 查晓明, 宫金武. 基于虚拟同步发电机技术的改进型背靠背起动方法[J]. 电工技术学报, 2020, 35(zk2): 413-420.
Tao Liang, Sun Jianjun, Zha Xiaoming, Gong Jinwu. A Modified Back-to-Back Starting Method Based on Virtual Synchronous Generator Technology. Transactions of China Electrotechnical Society, 2020, 35(zk2): 413-420.
[1] 李崇坚. 交流同步电机调速系统[M]. 2版. 北京: 科学出版社,2013. [2] 金光哲. 大功率同步电动机自控变频式软起动技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [3] 樊英, 谭超. 内置式交替极永磁同步电机性能及机理研究[J]. 电工技术学报, 2018, 33(11): 2414-2422. Fan Ying, Tan Chao.Analysis of electromagnetic performance and principles in inserted consequent-pole permanent magnet synchronous machines[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2414-2422. [4] 金一丁, 于钊, 李明节, 等. 新一代调相机与电力电子无功补偿装置在特高压交直流电网中应用的比较[J]. 电网技术, 2018, 42(7): 2095-2102. Jin Yiding, Yu Zhao, Li Mingjie, et al.Comparison of new generation synchronous condenser and power electronic reactive-power compensation devices in application in UHV DC/AC grid[J]. Power System Technology, 2018, 42(7): 2095-2102. [5] 李涛丰, 汪洪亮, 康勇, 等. 大功率电机直接起动的逆变器控制模式切换策略[J]. 电工技术学报, 2012, 27(6): 69-76. Li Taofeng, Wang Hongliang, Kang Yong, et al.Control model switching strategy for high-power motor[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 69-76. [6] 刘秀诚, 刘莉诚. 6300kW电机起动用自耦变压器的探讨[J]. 变压器, 1995(8): 36-38. Liu Xiucheng, Liu Licheng.Discussion on the autotransformer for starting a 6300kW motor[J]. Transformer, 1995(8): 36-38. [7] da Silva K F, Jacobina C B, Lima A M N. Vector control in synchronous machine drives[C]// Proceedings IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation, Kobe, 1991: 177-181. [8] Beliaev D, Weinger A.Field oriented control of a synchronous drive[C]//IEEE International Conference on Electric Machines and Drives, San Antonio, 2005: 957-961. [9] 张立伟, 李行, 宋佩佩, 等. 基于改进型滑模观测器的永磁同步电机无传感器矢量控制系统[J]. 电工技术学报, 2019, 34(增刊1): 70-78. Zhang Liwei, Li Xing, Song Peipei, et al.Sensorless vector control using a new sliding mode observer for permanent magnet synchronous motor speed control system[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 70-78. [10] 杨建飞, 曹伟, 李德才, 等. 两相导通无刷直流电机直接转矩控制零电压矢量特性分析[J].电工技术学报, 2019, 34(23): 4948-4956. Yang Jianfei, Cao Wei, Li Decai, et al.Analysis on zero voltage vector in two-phase conduction direct torque control of brushless DC motor[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4948-4956. [11] Concordia C, Brown P G, Miller W J, et al. Synchronous starting of motor from generator of small capacity[J]. IEEE Transactions on Power Apparatus and Systems, 1967, PAS-86(10): 1215-1226. [12] 戈宝军, 王自涛, 黄晓瑞, 等. 同步电机背靠背起动精确数学模型及其分析[J]. 电工技术学报, 1999, 14(3): 21-24. Ge Baojun, Wang Zitao, Huang Xiaorui, et al.Accurate mathematical model about synchronous machine back to back starting[J]. Transactions of China Electrotechnical Society, 1999, 14(3): 21-24. [13] Zhong Qingchang. AC ward Leonard drive systems: revisiting the four-quadrant operation of AC machines[J]. European Journal of Control, 2013, PAS-19(5): 426-435. [14] Alexa D, Pletea I V, Lazar A, et al.Static frequency converter with PWM self-control inverter for an induction motor[C]//2015 International Symposium on Signals, Circuits and Systems, Iasi, 2015: 1-4. [15] Elghonimy M, Fawzi M, Kalas A E, et al.Proportional resonant controller with resonant harmonic compensators for three-phase static frequency converter feeding nonlinear loads[C]//2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Cairo, 2017: 308-313. [16] 寇佳宝, 高强, 徐可, 等. 负载换相逆变器驱动电励磁同步电机静止及低速转子位置检测方法[J]. 电工技术学报, 2018, 33(24): 5670-5677. Kou Jiabao, Gao Qiang, Xu Ke, et al.Rotor position detection method at standstill or low speed for load commutated inverter-fed electrically excited synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(24): 5670-5677. [17] Tao Liang, Sun Jianjun, Tao Qian, et al.Back-to-back starting of large-capacity condenser with virtual synchronous generator[C]//2019 IEEE Energy Conversion Congress and Exposition, Baltimore, 2019: 3203-3207. [18] Zhong Qingchang.Synchronverters: inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267. [19] 陈文倩, 辛小南, 程志平. 基于虚拟同步发电机的光储并网发电控制技术[J]. 电工技术学报, 2018, 33(增刊2): 538-545. Chen Wenqian, Xin Xiaonan, Cheng Zhiping.Control of grid-connected of photovoltaic system with storage based on virtual synchronous generator[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 538-545.