Traction Control Strategy of High-Speed Maglev Train Based on Hardware-in-the-Loop Real-Time Simulation Platform
Sun Pengkun1, 2, Ge Qiongxuan1, Wang Xiaoxin1, Zhu Jinquan1, 2, Zhang Bo1
1. Key Laboratory of Power Electronics and Electric Drive Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100049 China
Abstract:Electromagnetic suspension (EMS) maglev trains are driven by long stator linear synchronous motors (LSM). Due to the complicated construction and high cost of the high-speed operation environment, there are many difficulties in the actual construction of the maglev experimental line. In order to carry out research on high-speed maglev traction technology in the laboratory, it is necessary to build a hardware-in-the-loop real-time simulation system. The simulation platform is introduced based on RT-LAB simulator in this paper, including back-to-back three level converter, long stator linear synchronous motor and traction control system, which can verify the performance of high-speed maglev control system, traction control strategy and system interface. It is of great value for mastering the core technology of high-speed maglev traffic.
孙鹏琨, 葛琼璇, 王晓新, 朱进权, 张波. 基于硬件在环实时仿真平台的高速磁悬浮列车牵引控制策略[J]. 电工技术学报, 2020, 35(16): 3426-3435.
Sun Pengkun, Ge Qiongxuan, Wang Xiaoxin, Zhu Jinquan, Zhang Bo. Traction Control Strategy of High-Speed Maglev Train Based on Hardware-in-the-Loop Real-Time Simulation Platform. Transactions of China Electrotechnical Society, 2020, 35(16): 3426-3435.
[1] 吴祥明. 磁悬浮列车[M]. 上海: 上海科学技术出版社, 2003. [2] 葛琼璇. 高速磁悬浮列车用牵引变流器系统及牵引控制技术研究[D]. 北京: 中国科学院电工研究所, 2006. [3] Lu Bin, Wu Xin, Figueroa H, et al.A low-cost real- time hardware-in-the-loop testing approach of power electronics controls[J]. IEEE Transactions on Indu- strial Electronics, 2007, 54(2): 919-931. [4] 卢子广, 柴建云, 王祥珩, 等. 电力驱动系统实时控制虚拟实验平台[J]. 中国电机工程学报, 2003, 23(4): 119-123. Lu Ziguang, Chai Jianyun, Wang Xiangheng, et al.Virtual test platform for real-time control of electrical drives[J]. Proceedings of CSEE, 2003, 23(4): 119-123. [5] 李秋硕, 张剑, 肖湘宁, 等. 基于RTDS的机电电磁暂态混合实时仿真及其在FACTS中的应用[J]. 电工技术学报, 2012, 27(3): 219-226. Li Qiushuo, Zhang Jian, Xiao Xiangning, et al.Electromechanical-electromagnetic transient real- time simulation based on RTDS and its application to FACTS[J]. Transactions of China Electrotechnical Society, 2012, 27(3): 219-226. [6] Champagne R, Dessaint L A, Fortin-Blanchette H, et al.Analysis and validation of a real-time AC drive simulator[J]. IEEE Transactions on Power Electro- nics, 2004, 19(2): 336-345. [7] 丁荣军, 桂卫华, 陈高华. 电力机车交流传动系统的半实物实时仿真[J]. 中国铁道科学, 2008, 29(4): 96-102. Ding Rongjun, Gui Weihua, Chen Gaohua.HIL real-time simulation of electric locomotive AC drive system[J]. China Railway Science, 2008, 29(4): 96-102. [8] 李晓庆. 基于dSPACE永磁同步电机模型参考模糊自适应方法研究[D]. 无锡: 江南大学, 2005. [9] Matar M, Iravani R.Massively parallel implement- ation of AC machine models for FPGA based real time simulation of electromagnetic transients[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 830-840. [10] 刘金鑫, 葛琼璇, 王晓新, 等. 高速磁浮牵引控制系统半实物实验研究[J]. 电工技术学报, 2015, 30(14): 497-503. Liu Jinxin, Ge Qiongxuan, Wang Xiaoxin, et al.Hardware-in-loop research of traction-system for high-speed maglev[J]. Transactions of China Electro- technical Society, 2015, 30(14): 497-503. [11] Tavana N R, Dinavahi V.Real-time FPGA-based analytical space harmonic model of permanent magnet machines for hardware-in-the-loop simula- tion[J]. IEEE Transactions on Magnetics, 2015, 51(8): 1-9. [12] 年珩, 陈亮. 基于三电平变流器的单边可控开绕组永磁同步发电机系统控制技术[J]. 中国电机工程学报, 2016, 36(22): 6238-6245. Nian Heng, Chen Liang.Control techniques of open winding PMSG systems fed by integration of three level NPC converters and diode bridges[J]. Pro- ceedings of the CSEE, 2016, 36(22): 6238-6245. [13] 殷正刚. 大功率三电平逆变器脉宽调制及磁场定向控制研究[D]. 北京: 中国科学院电工研究所, 2012. [14] 于亚男, 金阳忻, 江全元, 等. 基于RT-LAB的柔性直流配电网建模与仿真分析[J]. 电力系统保护与控制, 2015, 43(19): 126-129. Yu Yanan, Jin Yangxin, Jiang Quanyuan, et al.RT-LAB based modeling and simulation analysis of flexible DC distribution network[J]. Power System Protection and Control, 2015, 43(19): 126-129. [15] Hazra S, Sensarma P.Vector approach for self- excitation and control of induction machine in stand-alone wind power generation[J]. IEEE Transa- ctions on Renewable Power Generation, 2011, 5(5): 397-405. [16] 王娟. 磁悬浮列车用长定子直线同步电机特性研究与故障分析[D]. 北京: 中国科学院电工研究所, 2004. [17] 李洋, 史黎明, 李耀华. 直线同步电机牵引系统实物在环实时仿真算法[J]. 电工技术学报, 2013, 28(增刊1): 363-370. Li Yang, Shi Liming, Li Yaohua.Hardwar-in-loop platform for high-speed maglev traction system[J]. Transactions of China Electrotechnical Society, 2013, 28(S1): 363-370. [18] Abourida S, Bélanger J, Dufour C.Real-time HIL simulation of a complete PMSM drive at 10/spl mu/s time step[C]//European Conference on Power Elec- tronics and Applications, Dresden, 2005, DOI: 10. 1109/EPE.2005.219587. [19] 孙鹏琨, 葛琼璇, 王晓新, 等. 磁悬浮列车在双端供电模式下的无速度传感器控制[J]. 电工技术学报, 2018, 33(18): 73-80. Sun Pengkun, Ge Qiongxuan, Wang Xiaoxin, et al.Speed sensorless control of maglev train with double-end power supply[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 73-80. [20] 张波, 葛琼璇, 刘金鑫, 等. 基于扩展反电动势法的长定子直线同步电机无速度传感器控制研究[J]. 电工技术学报, 2017, 32(23): 91-99. Zhang Bo, Ge Qiongxuan, Liu Jinxin, et al.Research on speed sensorless control of long stator linear synchronous motor based on EEMF[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 91-99.