Abstract:The new decentralized micro-grid structure has become the focus of research in recent years because of no communication between equipments, low cost and good stability, but its multi machine pre-synchronous grid connection has become a technical difficulty. In view of the decentralized structure, a non-communication pre-synchronous control scheme is proposed by using single VSG, and the current limitation is adopted to solve the circulation. Firstly, there are introductions to the principle of pre-synchronization based on virtual power and three pre-synchronization methods of multi-parallel VSGs. Secondly, the performance of two phase pre-synchronization controllers is analyzed by the small signal model; the theoretical analysis on the active power circulation problem is carried out by equivalent frequency model for parallel VSGs in the pre-synchronization process; the parameters of first-order virtual inertia link are designed by equivalent VSG. Finally, the simulation and experiment results of three pre-synchronization methods show that the proposed pre-synchronization method can not only reduce the dynamic power circulation of parallel VSGs but also actualize the fast-pre-synchronization control, and then the seamless switching control of DGs can be realized.
颜湘武, 王德胜, 贾焦心. 基于分散式微电网的虚拟同步发电机无通信预同步并网方案[J]. 电工技术学报, 2019, 34(19): 4143-4153.
Yan Xiangwu, Wang Desheng, Jia Jiaoxin. Non-Communication Pre-Synchronization Scheme of VSGs Based on Decentralized Microgrids. Transactions of China Electrotechnical Society, 2019, 34(19): 4143-4153.
[1] 郑天文, 陈来军, 陈天一, 等. 虚拟同步发电机技术及展望[J]. 电力系统自动化, 2015, 39(21): 165-175. Zheng Tianwen, Chen Laijun, Chen Tianyi, et al.Review and prospect of virtual synchronous generator technologies[J]. Automation of Electric Power System, 2015, 39(21): 165-175. [2] 吴青峰, 孙孝峰, 王雅楠, 等. 基于分布式下垂控制的微电网分布式储能系统SOC平衡策略[J]. 电工技术学报, 2018, 33(6): 1247-1256. Wu Qingfeng, Sun Xiaofeng, Wang Yanan, et al.A distributed control strategy for SOC balancing of distributed energy storage systems in microgrid[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1247-1256. [3] Wang Shuo, Hu Jiabing, Yuan Xiaoming.Virtual synchronous control for grid-connected DFIG-based wind turbines[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(4): 932-944. [4] 颜湘武, 刘正男, 张波, 等. 具有同步发电机特性的并联逆变器小信号稳定性分析[J]. 电网技术, 2016, 40(3): 1-11. Yan Xiangwu, Liu Zhengnan, Zhang Bo, et al.Small-signal stability analysis of parallel inverters with synchronous generator characteristics[J]. Power System Technology, 2016, 40(3): 1-11. [5] 李明烜, 王跃, 徐宁一, 等. 基于带通阻尼功率反馈的虚拟同步发电机控制策略[J]. 电工技术学报, 2018, 33(10): 2176-2185. Li Mingxuan, Wang Yue, Xu Ningyi, et al.Virtual synchronous generator control strategy based on bandpass damping power feedback[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2176-2185. [6] 贾焦心. 交直流混合微电网接口变换器控制研究[D]. 北京: 北方工业大学, 2017. [7] 石荣亮, 张兴, 刘芳, 等. 虚拟同步发电机及其在多能互补微电网中的运行控制策略[J]. 电工技术学报, 2016, 31(20): 170-180. Shi Rongliang, Zhang Xing, Liu Fang, et al.Control technologies of multi-energy complementary microgrid operation based on virtual synchronous generator[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 170-180. [8] 杨亮, 王聪, 吕志鹏, 等. 基于同步逆变器的预同步并网方式[J]. 电网技术, 2014, 38(11): 3103-3108. Yang Liang, Wang Cong, Lü Zhipeng, et al.The method of pre-synchronized grid-connection of synchronverter[J]. Power System Technology, 2014, 38(11): 3103-3108. [9] 颜湘武, 贾焦心, 王德胜, 等. 虚拟同步发电机的并网功率控制及模式平滑切换[J]. 电力系统自动化, 2018, 42(9): 91-99. Yan Xiangwu, Jia Jiaoxin, Wang Desheng, et al.Power control and smooth mode switchover for grid-connected virtual synchronous generators[J]. Automation of Electric Power Systems, 2018, 42(9): 91-99. [10] 陈丽娟, 王致杰. 基于改进下垂控制的微电网运行控制研究[J]. 电力系统保护与控制, 2016, 44(4): 16-21. Chen Lijuan, Wang Zhijie.Research of operation control of micro-grid based on improved droop control[J]. Power System Protection and Control, 2016, 44(4): 16-21. [11] Guerrero J M, Vasquez J C, Matas J, et al.Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 158-172. [12] 王晓寰, 张纯江, 高彩云, 等. 基于下垂控制的双模式逆变器一体化控制策略[J]. 电网技术, 2016, 40(7): 2148-2154. Wang Xiaohuan, Zhang Chunjiang, Gao Caiyun, et al.Integrated control strategy of dual mode inverter based on improved droop control[J]. Power System Technology, 2016, 40(7): 2148-2154. [13] 梁建钢, 金新民, 荆龙, 等. 微电网系统准同期并网改进控制策略[J].电网技术, 2014, 38(11): 3071-3078. Liang Jiangang, Jin Xinmin, Jing Long, et al.An improved control strategy for quasi-synchronous grid-connection of microgrid[J]. Power System Technology, 2014, 38(11): 3071-3078. [14] Zhong Qingchang, Phi-Long N, Ma Zhenyu, et al.Self-synchronized synchronverters: inverters without a dedicated synchronization unit[J]. IEEE Transactions on Power Electronics, 2014, 29(2): 617-630. [15] 张腾飞, 黎旭昕. 含光伏源的微电网孤岛/联网平滑切换控制策略[J]. 电网技术, 2015, 39(4): 904-910. Zhang Tengfei, Li Xuxin.A control strategy for smooth switching between island operation mode and grid-connection operation mode of microgrid containing photovoltaic generations[J]. Power System Technology, 2015, 39(4): 904-910. [16] 聂志强, 梁晖, 罗浩, 等. 基于非线性下垂控制的单模式微网并/离网无缝切换技术[J]. 电网技术, 2016, 40(5): 1371-1378. Nie Zhiqiang, Liang Hui, Luo Hao, et al.Single mode grid-connected/islanded microgrid seamless transition based on nonlinear droop control technology[J]. Power System Technology, 2016, 40(5): 1371-1378. [17] 郑文迪, 刘丽军, 曾静岚. 采用改进相位控制方法的微网并网/孤岛平滑切换策略[J]. 电网技术, 2016, 40(4): 1155-1162. Zheng Wendi, Liu Lijun, Zeng Jinglan.Smooth switching strategy between grid-connected and islanded microgrid using improved phase control method[J]. Power System Technology, 2016, 40(4): 1155-1162. [18] 魏亚龙, 张辉, 孙凯, 等. 基于虚拟功率的虚拟同步发电机预同步方法[J]. 电力系统自动化, 2016, 40(12): 124-129. Wei Yalong, Zhang Hui, Sun Kai, et al.Pre- synchronization method of virtual synchronous generator using virtual power[J]. Automation of Electric Power Systems, 2016, 40(12): 124-129. [19] 程启明, 褚思远, 程尹曼, 等. 基于改进型下垂控制的微电网多主从混合协调控制[J]. 电力系统自动化, 2016, 40(20): 69-75. Cheng Qiming, Chu Siyuan, Cheng Yinman, et al.Multiple master-slave mixed coordinated control for microgrid based on improved droop control[J]. Automation of Electric Power Systems, 2016, 40(20): 69-75. [20] Liu Jia, Miura Y, Ise T.Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators[J]. IEEE Transactions on Power Electronics, 2016, 31(5): 3600-3611. [21] 张波, 颜湘武, 黄毅斌, 等. 虚拟同步机多机并联稳定控制及其惯量匹配方法[J]. 电工技术学报, 2017, 32(10): 42-52. Zhang Bo, Yan Xiangwu, Huang Yibin, et al.Stability control and inertia matching method of multi-parallel virtual synchronous generators[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 42-52. [22] 袁小明, 程时杰, 胡家兵. 电力电子化电力系统多尺度电压功角动态稳定问题[J]. 中国电机工程学报, 2016, 36(19): 5145-5154. Yuan Xiaoming, Cheng Shijie, Hu Jiabing.Multi-time scale voltage and power angle dynamics in power electronics dominated large power systems[J]. Proceedings of the CSEE, 2016, 36(19): 5145-5154. [23] Gu Wei, Lou Guannan, Tan Wen, et al.A nonlinear state estimator-based decentralized secondary voltage control scheme for autonomous microgrids[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4794-4804. [24] 吴丽珍. 交流微电网系统网络化分层协调控制策略研究[D]. 兰州: 兰州理工大学, 2017. [25] Shafiee Q, Guerrero J M, Vasquez J C.Distributed secondary control for islanded microgrids—a novel approach[J]. IEEE Transactions on Power Electronics, 2013, 29(2): 1018-1031. [26] Wu Teng, Liu Jinjun, Liu Zeng, et al.Load power estimation based secondary control for microgrids[C]//Proceedings of Ninth International Conference on Power Electronics-ECCE Asia, Seoul, Korea, 2015: 722-727. [27] 赵耀, 王建, 杨晓梅, 等. 有零点二阶系统的动态性能分析[J]. 电气电子教学学报, 2013, 35(3): 11-14. Zhao Yao, Wang Jian, Yang Xiaomei, et al.Dynamic performance analysis of second-order systems with a zero[J]. Journal of Electrical & Electronic Engineering Education, 2013, 35(3): 11-14. [28] 张平, 蔡环宇, 石健将, 等. 应用P/W(Q/E)“导纳”的逆变器并联系统稳定性分析方法[J]. 中国电机工程学报, 2016, 36(9): 2486-2493. Zhang Ping, Cai Huanyu, Shi Jianjiang, et al.Stability analysis of parallel inverter systems using a P/W(Q/E) “admittance”[J]. Proceedings of the CSEE, 2016, 36(9): 2486-2493.