Research Review on Topology and Control Strategy of PV and Energy Storage Connected to Railway Traction Power Supply Systems
Chen Chong1, Jia Limin1,2, Zhao Tianyu1, Shao Chenhu3, Wang Yanghui4
1. China Institute of Energy and Transportation Integrated Development North China Electric Power University Beijing 102206 China; 2. School of Traffic and Transportation Beijing Jiaotong University Beijing 100044 China; 3. Beijing Nego Automation Technology Co. Ltd Beijing 100044 China; 4. State Grid TaiShun Electric Power Supply Company Wenzhou 317101 China
Abstract:Under the guidance of “carbon peaking and carbon neutrality” goals, integrating photovoltaics and energy storage into railway traction power supply systems has become a general trend. The random strong fluctuation characteristics of photovoltaic power generation and locomotive load need adaptive topology architecture and intelligent energy scheduling strategies. Flexible and effective converter control methods become powerful measures for railway traction power supply systems embedded with photovoltaic and energy storage. This paper reviews the topology architecture and control strategies of photovoltaic and energy storage in electrified railways. This paper categorizes photovoltaic and energy storage schemes in railway traction power supply systems into three-phase, single-phase, two-phase, in-phase, and DC types. Then, each scheme’s definition, characteristics, and topology are summarized. The different topological architectures are analyzed from perspectives of traction power supply systems and inverter equipment. The control strategies of photovoltaic and energy storage implantation in railway traction power supply systems can be divided into photovoltaic implantation strategy, energy storage implantation strategy, and photovoltaic and energy storage synergy strategy according to the energy layer and converter layer. In the photovoltaic implantation strategy, typical achievements of energy control strategies based on the enumeration method and particle swarm optimization method are proposed, and the converter control strategies for the typical topologies connected with two-phase or three-phase are introduced. In the energy storage implantation strategy, this paper subdivides the categories, working principles, and typical achievements of energy control strategies according to threshold rules, proportion rules, fuzzy rules, and optimization models. A detailed comparison is given from categories, applicable energy storage media, advantages, and disadvantages, and a flow control strategy is introduced based on RPC and MMC two-phase access topologies. In the photovoltaic and energy storage synergy strategy, the typical achievements of energy control strategies based on the optimization model method are presented. Meanwhile, a converter control strategy is proposed based on typical topologies of RPC two-phase access and DC access. This paper looks forward to the novel railway traction power supply system implanted with photovoltaics and energy storage from three aspects- electrical topology, energy management, and converter control. Based on the primary demand and pain points of strong, weak, and non-electric scenarios, this paper introduces eight configuration schemes and nine topology architectures adapted to different assessment schemes. An energy management system is proposed based on cloud-edge collaborative next-generation artificial intelligence technology to meet self-contained scheduling and collaborative operation of new traction power supply systems. A current control strategy with a voltage source attribute is proposed to ensure the stable, reliable, and safe operation of a new traction power supply system under strong random fluctuations of source and load. The conclusions can be drawn as follows. (1) The railway traction power supply systems implanted with photovoltaic and energy storage have yet to form a systematic solution set in electrical topology architecture. (2) The current top-level design logic for integrating photovoltaics and energy storage into railway traction power supply systems takes the strong grid as its main support to design the system topology architecture and control strategies. More research needs to be conducted for novel railway traction power supply systems under weak or non-grid scenarios. (3) Constructing a new railway traction power supply system with renewable energy and energy storage is an inevitable trend. Therefore, closed-loop research is urgent, including the topology architecture, planning and configuration, stable control, self-contained scheduling, engineering construction, and effect evaluation. Thus, a technical system for the new railway traction power supply system can be formed.
陈冲, 贾利民, 赵天宇, 邵晨虎, 王扬慧. 光伏和储能植入铁路牵引供电系统的拓扑架构与控制策略研究综述[J]. 电工技术学报, 2024, 39(24): 7874-7901.
Chen Chong, Jia Limin, Zhao Tianyu, Shao Chenhu, Wang Yanghui. Research Review on Topology and Control Strategy of PV and Energy Storage Connected to Railway Traction Power Supply Systems. Transactions of China Electrotechnical Society, 2024, 39(24): 7874-7901.
[1] 陈冲, 贾利民, 赵天宇, 等. 去碳化导向的轨道交通与新能源融合发展——形态模式、解决方案和使/赋能技术[J]. 电工技术学报, 2023, 38(12): 3321-3337. Chen Chong, Jia Limin, Zhao Tianyu, et al.Decar-bonization-oriented rail transportation and renewable energy integration development-configurations, solu-tions, and enabling/empowering technologies[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3321-3337. [2] Jia L, Ma J, Peng C, et al.A perspective on solar energy-powered road and rail transportation in China[J]. CSEE Journal of Power and Energy Systems, 2020, 6(4): 760-771. [3] Junyu Chen, Haitao Hu, Minghao Wang, et al.Power flow control-based regenerative braking energy utilization in AC electrified railways: review and future trends[J]. IEEE Transactions on Intelligent Transportation Systems: 1-21 [2024-4-15]. DOI: 10.1109/TITS.2024.3350743. [4] Hayashiya H, Iino Y, Takahashi H, et al.Review of regenerative energy utilization in traction power supply system in Japan: applications of energy storage systems in d.c. traction power supply system[C]//IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2017. DOI: 10.1109/IECON.2017.8216670. [5] Naina P M, Rajamani H S, Swarup K S.Modeling and simulation of virtual power plant in energy management system applications[C]//2017 Inter-national Conference on Power Systems (ICPS), Pune, India, 2017. DOI: 10.1109/ICPES.2017.8387326. [6] Bade S K, Kulkarni V A. Analysis of railway traction power system using renewable energy: a review[C]//2018 International conference on computation of power, energy, Information and Communication (ICCPEIC), 2018. DOI: 10.1109/ICCPEIC.2018.8525206. [7] Saeed M, Briz F, Guerrero J M, et al.Onboard energy storage systems for railway: present and trends[J]. IEEE Open Journal of Industry Applications, 2023, 4: 238-259. [8] Alahakoon S, Leksell M.Emerging energy storage solutions for transportation-a review[C]//3rd Inter-national Conference on electrical systems for aircraft, railway, ship propulsion and road vehicles. IEEE, 2015. DOI: 10.1109/ESARS.2015.7101490. [9] Ronanki D, Williamson S S.Modular multilevel converters for transportation electrification: challenges and opportunities[J]. IEEE Transactions on Trans-portation Electrification, 2018, 4(2): 399-407. [10] Ronanki D, Singh S A, Williamson S S.Com-prehensive topological overview of rolling stock architectures and recent trends in electric railway traction systems[J]. IEEE Transactions on Trans-portation Electrification, 2017, 3(3): 724-738. [11] 罗嘉明, 韦晓广, 高仕斌, 等. 高速铁路储能系统容量配置与能量管理技术综述与展望[J]. 中国电机工程学报, 2022, 42(19): 7028-7051. Luo Jiaming, Wei Xiaoguang, Gao Shibin, et al.Summary and outlook of capacity configuration and energy management technology of high-speed railway energy storage system[J]. Proceedings of the CSEE, 2022, 42(19): 7028-7051. [12] 闵永智, 成柯, 袁佳歆, 等. 储能接入铁路的拓扑及控制策略研究综述[J]. 高电压技术, 2023, 49(10): 4069-4083. Min Yongzhi, Cheng Ke, Yuan Jiaxin, et al.Research review on topology and control strategy of energy storage connected to electrified railway[J]. High Voltage Engineering, 2023, 49(10): 4069-4083. [13] 张刚毅, 李群湛. 电气化铁道异相供电方式向同相供电方式的转换[J]. 电力自动化设备, 2012, 32(11): 142-145, 154. Zhang Gangyi, Li Qunzhan.Transfer from out-phase power supply to in-phase power supply[J]. Electric Power Automation Equipment, 2012, 32(11): 142-145, 154. [14] Zhang D, Zhang Z, Wang W, et al.Negative sequence current optimizing control based on railway static power conditioner in v/v traction power supply system[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 1-13. [15] 常非, 李群湛, 赵丽平, 等. 电气化铁路背靠背SVG补偿系统方案研究[J]. 郑州大学学报(工学版), 2011, 32(5): 117-120. Chang Fei, Li Qunzhan, Zhao Liping, et al.Research on back-to-back SVG compensation scheme used in electrified railway[J]. Journal of Zhengzhou University (Engineering Science), 2011, 32(5): 117-120. [16] Shu Z, Xie S, Li Q.Single-phase back-to-back converter for active power balancing, reactive power compensation, and harmonic filtering in traction power system[J]. IEEE Transactions on Power Elec-tronics, 2011, 26(2): 334-343. [17] He X, Peng J, Han P, et al.A novel advanced traction power supply system based on modular multilevel converter[J]. IEEE Transactions on Access, 2019, 7: 165018-165028. [18] 陈维荣, 王璇, 李奇, 等. 光伏电站接入轨道交通牵引供电系统发展现状综述[J]. 电网技术, 2019, 43(10): 3663-3670. Chen Weirong, Wang Xuan, Li Qi, et al.Review on the development status of PV power station accessing to traction power supply system for rail transit[J]. Power System Technology, 2019, 43(10): 3663-3670. [19] 袁佳歆, 曲锴, 郑先锋, 等. 高速铁路混合储能系统容量优化研究[J]. 电工技术学报, 2021, 36(19): 4161-4169, 4182. Yuan Jiaxin, Qu Kai, Zheng Xianfeng, et al.Opti-mizing research on hybrid energy storage system of high speed railway[J]. Transactions of China Elec-trotechnical Society, 2021, 36(19): 4161-4169, 4182. [20] 程鹏, 刘文泉, 陈冲, 等. 面向电气化铁路牵引供电的光伏发电分相电流控制策略[J]. 电力系统自动化, 2022, 46(19): 145-153. Cheng Peng, Liu Wenquan, Chen Chong, et al.Individual phase current control strategy of photo-voltaic power generation for traction power supply of electrified railway[J]. Automation of Electric Power Systems, 2022, 46(19): 145-153. [21] Cheng P, Kong H, Wu C, et al.Integrated confi-guration and control strategy for PV generation in railway traction power supply systems[J]. CSEE Journal of Power and Energy Systems, 2022, 8(6): 1603-1612. [22] Şengör İ, Kılıçkıran H C, Akdemir H, et al.Energy management of a smart railway station considering regenerative braking and stochastic behaviour of ESS and PV generation[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3): 1041-1050. [23] Tian Z, kano N, Hillmansen S. Integration of energy storage and renewable energy sources into AC railway system to reduce carbon emission and energy cost[C]//2020 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 2020: 1-6. [24] de la Torre S, Sánchez-Racero A J, Aguado J A, et al. Optimal sizing of energy storage for regenerative braking in electric railway systems[J]. IEEE Transa-ctions on Power Systems, 2015, 30(3): 1492-1500. [25] 刘方中. 长大坡道储能型列车再生制动能量利用方案研究[J]. 电气化铁道, 2020, 31(5): 27-31. Liu Fangzhong.Research on the utilization scheme of regenerative braking for energy storage type train on tracks with long step gradient[J]. Electric Railway, 2020, 31(5): 27-31. [26] 宋育洋. 应用于交流电气化铁路的混合储能系统研究[D]. 北京: 北京交通大学, 2020. Song Yuyang.Research on hybrid energy storage system apply to AC electrified railway[D]. Beijing: Beijing Jiaotong University, 2020. [27] Mayer O, Lynass M, Gómez M, et al.Design aspects for high voltage MW PV systems for railway power supply[C]//29th European Photovoltaic Solar Energy Conference, Amsterdam, Netherlands, 2014: 2876-2879. [28] 杨云森. 基于MMC的同相供电变流器研究[D]. 成都: 西南交通大学, 2015. Yang Yunsen.Research on in-phase power supply converter based on MMC[D]. Chengdu: Southwest Jiaotong University, 2015. [29] 陈明亮. 组合式同相供电系统技术经济性研究[D]. 成都: 西南交通大学, 2015. Chen Mingliang.Study on technical economy of combined in-phase power supply system[D]. Chengdu: Southwest Jiaotong University, 2015. [30] 黄小红. 同相供电牵引变电所直挂变流器拓扑结构与控制策略研究[D]. 成都: 西南交通大学, 2016. Huang Xiaohong.Research on topology structure and control strategy of direct-hung converter in traction substation with in-phase power supply[D]. Chengdu: Southwest Jiaotong University, 2016. [31] 何晓琼. 基于多电平三相—单相变换器的贯通式同相牵引供电系统研究[D]. 成都: 西南交通大学, 2014. He Xiaoqiong.Research on through-type in-phase traction power supply system based on multilevel three-phase-single-phase converter[D]. Chengdu: Southwest Jiaotong University, 2014. [32] 张丽艳, 贾瑛, 韩笃硕, 等. 电气化铁路同相储能供电系统能量管理及容量配置策略[J]. 西南交通大学学报, 2023, 58(1): 22-29. Zhang Liyan, Jia Ying, Han Dushuo, et al.Energy management and capacity allocation scheme for co-phase traction power supply and energy storage system in electrified railways[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 22-29. [33] Huang C, Xie Y, Liu Y, et al.Energy management of co-phase traction power supply system considering PV and hybrid energy access based on information gap decision theory[C]//Proceedings of 2020 IEEE Sustainable Power and Energy Conference (iSPEC), Chengdu, China, 2020: 238-244. [34] 陈民武, 陈天舒, 代先锋, 等. 基于MMC的储能型同相供电系统模型及控制策略[J]. 中国铁道科学, 2022, 43(3): 132-143. Chen Minwu, Chen Tianshu, Dai Xianfeng, et al.Modeling and control strategy of energy storage co-phase power supply system based on MMC[J]. China Railway Science, 2022, 43(3): 132-143. [35] Cheng P, Liu W, Ma J, et al.Solar-powered rail transportation in China: potential, scenario, and case[J]. Energy, 2022, DOI: 10.1016/j.energy.2022.123221. [36] 刘元立, 李群湛. 含光伏和混合储能的同相牵引供电系统日前优化调度[J]. 西南交通大学学报, 2023, 58(1): 30-39. Liu Yuanli, Li Qunzhan.Day-ahead optimal schedu-ling of co-phase traction power supply system with photovoltaic and hybrid energy storage[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 30-39. [37] Cheng P, Kong H, Ma J, et al.Overview of resilient traction power supply systems in railways with interconnected microgrid[J]. CSEE Journal of Power and Energy Systems, 2021, 7(5): 1122-1132. [38] 邓文丽, 戴朝华, 陈维荣. 轨道交通能源互联网背景下光伏在交/直流牵引供电系统中的应用及关键问题分析[J]. 中国电机工程学报, 2019, 39(19): 5692-5702, 5897. Deng Wenli, Dai Chaohua, Chen Weirong.Appli-cation of PV generation in AC/DC traction power supply system and the key problem analysis under the background of rail transit energy internet[J]. Pro-ceedings of the CSEE, 2019, 39(19): 5692-5702, 5897. [39] Cui G, Luo L, Liang C, et al.Supercapacitor integrated railway static power conditioner for regenerative braking energy recycling and power quality improvement of high-speed railway system[J]. IEEE Transactions on Transportation Electrification, 2019, 5(3): 702-714. [40] Hayashiya H, Yokokawa S, Iino Y, et al.Regen-erative energy utilization in a.c. traction power supply system[C]//2016 IEEE International Power Elec-tronics and Motion Control Conference (PEMC), Varna, Bulgaria, 2016: 1125-1130. [41] Luo P, Li Q, Zhou Y, et al.Multi-application strategy based on railway static power conditioner with energy storage system[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(4): 2140-2152. [42] 李林蔚. 基于变换器串并联的交直交牵引变电所拓扑结构与控制技术研究[D]. 北京: 北京交通大学, 2020. Li Linwei.Research on topology structure and control technology of AC-DC-AC traction substation based on series-parallel converter[D]. Beijing: Beijing Jiaotong University, 2020. [43] 邓文丽, 戴朝华, 陈维荣, 等. 铁路功率调节器研究进展[J]. 中国电机工程学报, 2020, 40(14): 4640-4655, 4742. Deng Wenli, Dai Chaohua, Chen Weirong, et al.Research progress of railway power conditioner[J]. Proceedings of the CSEE, 2020, 40(14): 4640-4655, 4742. [44] 梁嘉懿. 光伏/储能接入电气化铁路牵引供电系统的背靠背变流器设计与验证[D]. 成都: 西南交通大学, 2021. Liang Jiayi.Design and verification of back-to-back converter for photovoltaic/energy storage connected to electrified railway traction power supply system[D]. Chengdu: Southwest Jiaotong University, 2021. [45] 杨欢. 考虑长大坡道段储能接入牵引供电系统建模及能量交互利用研究[D]. 兰州: 兰州交通大学, 2023. Yang Huan. research on modeling and energy interaction utilization of traction power supply system considering energy storage access in long ramp section[D]. Lanzhou: Lanzhou Jiaotong University, 2023. [46] Chen H, Che Y, Fu R, et al.Study on regenerative braking energy utilization and power quality control in electrified railways[C]//2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 2018: 1-6. [47] 王英, 辛月阳, 谢子昀, 等. 光储接入牵引供电系统应急供电方案下低频稳定性研究[J]. 铁道科学与工程学报, 2024, 21(3): 1189-1201. Wang Ying, Xin Yueyang, Xie Ziyun, et al.Research on low-frequency stability under the emergency power supply scheme of photovoltaic and battery access traction power supply system[J]. Journal of Railway Science and Engineering, 2024, 21(3): 1189-1201. [48] 赵霞, 谢子昀, 王英, 等. 基于拓展禁区判据的光伏接入牵引供电系统低频稳定性分析[J]. 高电压技术, 2023, 49(5): 1997-2007. Zhao Xia, Xie Ziyun, Wang Ying, et al.Low-frequency stability analysis of photovoltaic connected traction power supply system based on extended forbidden region-based criterion[J]. High Voltage Engineering, 2023, 49(5): 1997-2007. [49] 陈利夫, 解绍锋, 黄小红, 等. 储能式铁路功率调节器再生制动失效抑制方案研究[J]. 电气化铁道, 2021, 32(6): 27-35. Chen Lifu, Xie Shaofeng, Huang Xiaohong, et al.Research on the failure suppression scheme of regenerative braking for energy storage railway power regulator[J]. Electric Railway, 2021, 32(6): 27-35. [50] 陈维荣, 王小雨, 韩莹, 等. 基于RPC的光储接入牵引供电系统协调控制方法研究[J]. 西南交通大学学报, 2024, 59(1): 1-10. Chen Weirong, Wang Xiaoyu, Han Ying, et al.Research on coordinated control method of PV and battery access traction power supply system based on RPC[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 1-10. [51] Ma Q, Ma X, Luo P, et al.Research on coordinated control strategy of energy storage type railway power conditioner[J]. IEEE Transactions on Transportation Electrification, 2023, 9(1): 182-195. [52] 胡海涛, 孟玺, 杨孝伟, 等. 新型24kV柔性直流铁路牵引供电系统分层控制策略研究[J]. 中国电机工程学报, 2021, 41(10): 3373-3382, 3663. Hu Haitao, Meng Xi, Yang Xiaowei, et al.A hierarchical control strategy for the novel 24kV flexible direct current railway traction power system[J]. Proceedings of the CSEE, 2021, 41(10): 3373-3382, 3663. [53] 刘芸江, 胡海涛, 杨孝伟, 等. 24kV柔性直流牵引供电系统潮流计算方法与供电特性分析[J]. 电工技术学报, 2023, 38(9): 2323-2334. Liu Yunjiang, Hu Haitao, Yang Xiaowei, et al.Power flow calculation method and power distribution characteristics analysis of 24kV flexible direct current traction power system[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2323-2334. [54] 葛银波, 胡海涛, 杨孝伟, 等. 模块化多电平变流器型中压直流牵引供电系统控制方法研究[J]. 电工技术学报, 2018, 33(16): 3792-3801. Ge Yinbo, Hu Haitao, Yang Xiaowei, et al.Research on control strategy of modular multilevel converter based medium-voltage direct current traction power supply system[J]. Transactions of China Electro-technical Society, 2018, 33(16): 3792-3801. [55] 邓文丽. 光伏接入电气化铁路牵引供电系统的适应性及对策研究[D]. 成都: 西南交通大学, 2019. Deng Wenli.Study on adaptability and counter-measures of photovoltaic connected to electrified railway traction power supply system[D]. Chengdu: Southwest Jiaotong University, 2019. [56] 王翰林, 黄小红, 李昊洋, 等. 含分布式光伏接入的三相牵引供电系统电压协调控制方法[J]. 高电压技术, 2024, 50(4): 1645-1654. Wang Hanlin, Huang Xiaohong, Li Haoyang, et al.Voltage coordination control method of three-phase traction power supply system with distributed photovoltaic integration[J]. High Voltage Engineering, 2024, 50(4): 1645-1654. [57] Wu Mingliang, Wang Weiying, Deng Wenli, et al.Back-to-back PV generation system for electrified railway and its control strategy[C]//Proceedings of 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Harbin, China, 2017: 1-6. [58] 邓文丽, 戴朝华, 张涵博, 等. 复杂电气化铁路牵引用光伏发电系统综合优化控制方法研究[J]. 中国电机工程学报, 2020, 40(18): 5849-5865. Deng Wenli, Dai Chaohua, Zhang Hanbo, et al.Research on comprehensive optimization control method for traction photovoltaic generation system of complex electrified railway[J]. Proceedings of the CSEE, 2020, 40(18): 5849-5865. [59] 付子义, 张字远. 光伏电池最大功率点跟踪研究综述[J]. 电源技术, 2019, 43(12): 2067-2069, 2073. Fu Ziyi, Zhang Ziyuan.A review of maximum power point tracking techniques for photovoltaic system[J]. Chinese Journal of Power Sources, 2019, 43(12): 2067-2069, 2073. [60] 马茜, 郭昕, 罗培, 等. 基于超级电容储能的新型铁路功率调节器协调控制策略设计[J]. 电工技术学报, 2019, 34(4): 765-776. Ma Qian, Guo Xin, Luo Pei, et al.Regulator based on super capacitor energy storage coordinated control strategy design of new type railway power[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 765-776. [61] Chen J, Hu H, Ge Y, et al.An energy storage system for recycling regenerative braking energy in high-speed railway[J]. IEEE Transactions on Power Delivery, 2021, 36(1): 320-330. [62] Deng W, Dai C.A multifunctional energy storage system with fault-tolerance and its hierarchical optimization control in AC-fed railways[J]. IEEE Transactions on Power Delivery, 2022, 37(4): 2240-2452. [63] 耿安琪, 胡海涛, 张育维, 等. 基于阶梯能量管理的电气化铁路混合储能系统控制策略[J]. 电工技术学报, 2021, 36(23): 4916-4925. Geng Anqi, Hu Haitao, Zhang Yuwei, et al.Control strategy of hybrid energy storage system for elec-trified railway based on increment energy manage-ment[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4916-4925. [64] 诸斐琴, 杨中平, 林飞, 等. 基于加速时间预测的现代有轨电车储能系统能量管理与容量配置优化研究[J]. 电工技术学报, 2017, 32(23): 158-166. Zhu Feiqin, Yang Zhongping, Lin Fei, et al.Research on acceleration-time-prediction-based energy mana-gement and optimal sizing of onboard energy storage system for modern trams[J]. IEEE Transactions on Power Delivery, 2017, 32(23): 158-166. [65] 夏欢, 杨中平, 李旭阳, 等. 基于动态阈值控制策略的城轨超级电容储能系统寿命优化研究[J]. 铁道学报, 2016, 38(9): 23-30. Xia Huan, Yang Zhongping, Li Xuyang, et al.Research on life optimization of supercapacitor energy storage system in urban rail based on dynamic threshold control strategy[J]. Journal of the China Railway Society, 2016, 38(9): 23-30. [66] 赵亚杰, 夏欢, 王俊兴, 等. 基于动态阈值调节的城轨交通超级电容储能系统控制策略研究[J]. 电工技术学报, 2015, 30(14): 427-433. Zhao Yajie, Xia Huan, Wang Junxing, et al.Control strategy of ultracapacitor storage system in urban mass transit system based on dynamic voltage threshold[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 427-433. [67] 王玙, 杨中平, 李峰, 等. 有轨电车混合动力系统能量交互型管理策略与容量配置协同优化研究[J]. 电工技术学报, 2019, 34(8): 1780-1788. Wang Yu, Yang Zhongping, Li Feng, et al.Energy management strategy with energy interaction and configuration optimization for the tram's hybrid storage system[J]. Transactions of China Elec-trotechnical Society, 2019, 34(8): 1780-1788. [68] 王玙. 现代有轨电车车载混合储能系统能量管理策略及容量配置优化研究[D]. 北京: 北京交通大学, 2020. Wang Yu.Study on energy management strategy and capacity allocation optimization of hybrid energy storage system for modern trams[D]. Beijing: Beijing Jiaotong University, 2020. [69] 杨浩丰, 刘冲, 李彬, 等. 基于列车运行工况的城轨地面式混合储能系统控制策略研究[J]. 电工技术学报, 2021, 36(增刊1): 168-178. Yang Haofeng, Liu Chong, Li Bin, et al.Research on control strategy of urban rail ground hybrid energy storage device based on train operating condition[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 168-178. [70] 林仕立, 宋文吉, 冯自平, 等. 地铁混合储能系统及其功率动态分配控制方法[J]. 仪器仪表学报, 2016, 37(12): 2829-2835. Lin Shili, Song Wenji, Feng Ziping, et al.Hybrid energy storage system of metro and its control methodon power dynamic allocation[J]. Chinese Journal of Scientific Instrument, 2016, 37(12): 2829-2835. [71] Liu Yuyan, Yang Zhongping, Wu Xiaobo, et al.An adaptive energy management strategy of stationary hybrid energy storage system[J]. IEEE Transactions on Trans-portation Electrification, 2022, 8(2): 2261-2272. [72] Liu Yuyan, Yang Zhongping, Wu Xiaobo, et al.Adaptive threshold adjustment strategy based on fuzzy logic control for ground energy storage system in urban rail transit[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 9945-9956. [73] 刘青, 董浩然, 胡紫琪, 等. 基于粒子群混合灰狼算法的配电网故障恢复策略[J]. 华北电力大学学报(自然科学版), 2024, 51(4): 47-56. Liu Qing, Dong Haoran, Hu Ziqi, et al.Survey of subgroup optimization strategies for intelligent algorithms[J]. Journal of North China Electric Power University (Natural Science Edition), 2024, 51(4): 47-56. [74] 杜晓昕, 周薇, 王浩, 等. 智能算法的亚群优化策略综述[J]. 计算机应用, 2024, 44(3): 819-830. Du Xiaoxin, Zhou wei, Wang Hao, et al. Survey of subgroup optimization strategies for intelligent algorithms[J]. Jornal of Computer Application, 2024, 44(3): 819-830. [75] 邓文丽, 戴朝华, 韩春白雪, 等. 计及再生制动能量回收和电能质量改善的铁路背靠背混合储能系统及其控制方法[J]. 中国电机工程学报, 2019, 39(10): 2914-2924. Deng Wenli, Dai Chaohua, Han Chunbaixue, et al.Back-to-back hybrid energy storage system of electric railway and its control method considering regen-erative braking energy recovery and power quality improvement[J]. Transactions of China Electro-technical Society: 2019, 39(10): 2914-2924. [76] Wang Y, Yang Z P, Lin F, et al.A hybrid energy management strategy based on line prediction and condition analysis for the hybrid energy storage system of tram[J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1793-1803. [77] 董文哲, 杨斯泐, 梁宗佑, 等. 集成混合储能及RPC的牵引供电系统优化运行[J]. 储能科学与技术, 2023, 12(4): 1185-1193. Dong Wenzhe, Yang Sile, Liang Zongyou, et al.Research on optimal operation of traction power supply system with integrated hybrid energy storage and RPC[J]. Energy Storage Science and Technology, 2023, 12(4): 1185-1193. [78] Ma Q, Wang H, Luo P, et al.Real-time control strategy of tractive loadpeak clipping and valley filling based on model predictive control[J]. IEEE Transactions on Transportation Electrification, 2022, 8(3): 3208-3218. [79] Ge Y, Hu H, Chen J, et al.Combined active and reactive power flow control strategy for flexible railway traction substation integrated with ESS and PV[J]. IEEE Transactions on Sustainable Energy, 2022, 13(4): 1969-1981. [80] Aguado, José Antonio, Antonio José Sánchez Racero, et al. Optimal operation of electric railways with renewable energy and electric storage systems[J]. IEEE Transactions on Smart Grid, 2016, 9(2): 993-1001. [81] Liu Y L, Chen M W, Cheng Z et al. Robust energy management of high-speed railway co-phase traction substation with uncertain PV generation and traction load[J]. IEEE Transactions on Intelligent Trans-portation Systems, 2021, 23(6): 5079-5091. [82] 李俊豪, 涂春鸣, 王鑫, 等. 基于“规则+优化”的铁路站点实时能量管控策略[J]. 电工技术学报, 2024, 39(11): 3339-3352. Li Junhao, Tu Chunming, Wang Xin.Real-time energy management strategy for electrified railroad stations based on “rules+optimization”[J]. Transa-ctions of China Electrotechnical Society, 2024, 39(11): 3339-3352. [83] 罗嘉明, 高仕斌, 韦晓广, 等. 基于模糊Petri网的“网-源-储-车”动态阈值能量管理策略研究[J]. 工程科学与技术, 2023, 55(1): 48-58. Luo Jiangming, Gao Shibin, Wei Xiaoguang, et al.Research on “grid-source-storage-vehicle” dynamic threshold energy management based on fuzzy petri nets[J]. Advanced Engineering Science, 2023, 55(1): 48-58. [84] 廖海朱, 胡海涛, 黄毅, 等. 铁路“源-网-车-储”协同供能系统日前能量优化与调度策略[J]. 机车电传动, 2022(3): 1-9. Liao Haizu, Hu Haitao, Huang Yi, et al.Day-ahead energy optimization and scheduling strategy of “source-networktrain-storage” coordinated power supply system for electrified railways[J]. Electric Drive for Locomotives, 2022(3): 1-9. [85] 高锋阳, 宋志翔, 高建宁, 等. 计及光伏和储能接入的牵引供电系统能量管理策略[J]. 电工技术学报, 2024, 39(3): 745-757. Gao Fengyang, Song Zhixiang, Gao Jianning, et al.Energy management strategies for traction power systems with PV and energy storage access[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 745-757. [86] Liu Y L, Chen M W, Cheng Z, et al.Hierarchical energy management of networked flexible traction substations for efficient RBE and PV energy utilization within ERs[J]. IEEE Transactions on Sustainable Energy, 2023, 14(3): 1397-1410.