Transient Angle Stability Discrimination Method of New Energy Power System Based on I-ω Response Correlation Characteristics
Liu Cheng1, Li Shouchao1, Zhang Yuchi1, Zhang Yanjun2
1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China; 2. State Grid Liaoning Electric Power Co. Ltd Shenyang 110006 China
Abstract:Compared with the traditional power system, the transient stability dynamic characteristics of the new energy power system have undergone profound changes after large disturbances, which makes the traditional transient stability analysis methods difficult to apply. With the development and improvement of wide-area measurement systems, scholars have proposed discriminant methods based on response information. However, most have the problems with cumbersome calculations, unclear physical meaning, and low accuracy. This paper proposes a transient power-angle stability discrimination method for new energy power systems based on the correlation characteristics of generator current and angular velocity. Based on the transient key characteristics contained in current and angular velocity, the transient power angle stability of the system is quickly and accurately discriminated. Firstly, the generator current is divided into three sections, and the difference characteristics of the post-fault current are obtained by comparing the current situation of each section in the two cases of power system stability and instability. Secondly, the post-fault current is substituted into the generator rotor motion equation to establish the relationship between the post-fault current and the angular velocity, and the relationship between the two electrical quantities and the transient stability is revealed. Thirdly, by analyzing the characteristics of the relationship curve between current and angular velocity, the key characteristics of transient power angle stability and instability are extracted, and the influence of wind turbine access on the characteristics of the relationship curve is explored. The transient power angle stability criterion is constructed. Finally, the critical generator cluster is identified by comparing the change rate of the phase angle difference of the bus voltage at the terminal after the fault is cleared. The simulations of the improved New England 10-machine 39-bus system and the actual power grid show that the critical generator cluster can be accurately identified. The transient stability discrimination of system stability and instability scenarios is carried out. When the system is stable, the proposed method can accurately identify from the relationship curve that the current continues to decrease near the inflection point of the angular velocity. When the system is unstable, the current continues to increase near the inflection point of the angular velocity. The method uses 80 ms and 190 ms to distinguish the system instability. Through simulation analysis, the following conclusions can be drawn. (1) Based on the measured response information, this method can avoid the influence of system operation mode, network structure, model, and parameters. (2) The electrical quantity used in this method is simple and easy to measure. It does not need complicated calculation or coordinate transformation of the response information, which avoids the error caused by calculation or transformation. (3) The proposed criterion is simple and feasible, and the discriminant results can be obtained quickly.
刘铖, 李守超, 张宇驰, 张艳军. 基于I-ω 响应关联特征的新能源电力系统暂态功角稳定判别方法[J]. 电工技术学报, 2024, 39(24): 7902-7916.
Liu Cheng, Li Shouchao, Zhang Yuchi, Zhang Yanjun. Transient Angle Stability Discrimination Method of New Energy Power System Based on I-ω Response Correlation Characteristics. Transactions of China Electrotechnical Society, 2024, 39(24): 7902-7916.
[1] 汤涌. 电力系统安全稳定综合防御体系框架[J]. 电网技术, 2012, 36(8): 1-5. Tang Yong.Framework of comprehensive defense architecture for power system security and stability[J]. Power System Technology, 2012, 36(8): 1-5. [2] 蔡国伟, 穆钢, Chan K W, 等. 基于网络信息的暂态稳定性定量分析: 支路势能法[J]. 中国电机工程学报, 2004, 24(5): 1-6. Cai Guowei, Mu Gang, Chan K W, et al.Branch potential energy method for power system transient stability assessment based on network dynamic variables[J]. Proceedings of the CSEE, 2004, 24(5): 1-6. [3] 滕林, 刘万顺, 贠志皓, 等. 电力系统暂态稳定实时紧急控制的研究[J]. 中国电机工程学报, 2003, 23(1): 64-69. Teng Lin, Liu Wanshun, Yuan Zhihao, et al.Study of real-time power system transient stability emergency control[J]. Proceedings of the CSEE, 2003, 23(1): 64-69. [4] 葛平娟, 肖凡, 涂春鸣, 等. 考虑故障限流的下垂控制型逆变器暂态控制策略[J]. 电工技术学报, 2022, 37(14): 3676-3687. Ge Pingjuan, Xiao Fan, Tu Chunming, et al.Transient control strategy of droop-controlled inverter con-sidering fault current limitation[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3676-3687. [5] 王科, 秦文萍, 张宇, 等. 双馈风机等效惯量控制比例系数对系统功角首摆稳定的影响机理分析[J]. 电工技术学报, 2023, 38(3): 741-753. Wang Ke, Qin Wenping, Zhang Yu, et al.Mechanism analysis of effect of equivalent proportional coefficient of inertia control of DFIG on stability of first swing of power angle[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 741-753. [6] 李生虎, 张亚海, 叶剑桥, 等. 基于双馈风电机组控制参数优化的电网功角振荡控制[J]. 电工技术学报, 2023, 38(5): 1325-1338. Li Shenghu, Zhang Yahai, Ye Jianqiao, et al.Power angle oscillation control of power grid based on control parameter optimization of doubly-fed wind turbine generator[J]. Transactions of China Electro-technical Society, 2023, 38(5): 1325-1338. [7] 林伟芳, 汤涌, 孙华东, 等. 巴西“2·4”大停电事故及对电网安全稳定运行的启示[J]. 电力系统自动化, 2011, 35(9): 1-5. Lin Weifang, Tang Yong, Sun Huadong, et al.Blackout in Brazil power grid on February 4, 2011 and inspirations for stable operation of power grid[J]. Automation of Electric Power Systems, 2011, 35(9): 1-5. [8] 吴政球, 陈辉华, 唐外文, 等. 以单机等面积稳定判据分析多机系统暂态稳定性[J]. 中国电机工程学报, 2003, 23(4): 48-52. Wu Zhengqiu, Chen Huihua, Tang Waiwen, et al.Using single machine equal area criterion to analyze multi-machine systems stability[J]. Proceedings of the CSEE, 2003, 23(4): 48-52. [9] 李锡林, 查晓明, 田震, 等. 考虑频率突变影响的孤岛微电网系统建模和基于Lyapunov第二法的暂态稳定性分析[J]. 电工技术学报, 2023, 38(增刊1): 18-31. Li Xilin, Zha Xiaoming, Tian Zhen, et al.Modeling of island microgrid considering frequency mutation and transient stability analysis based on Lyapunov second method[J]. Transactions of China Electrotechnical Society, 2023, 38(S1): 18-31. [10] 刘铖, 张昊鑫, 朱晓锋, 等. 基于随机网络能量的电力系统暂态稳定评估[J]. 东北电力大学学报, 2022, 42(6): 90-99. Liu Cheng, Zhang Haoxin, Zhu Xiaofeng, et al.Transient stability assessment of power system based on random network energy[J]. Journal of Northeast Electric Power University, 2022, 42(6): 90-99. [11] 刘铖, 王旭, 张宇驰. 基于负荷模式能量的永磁风机电网功率振荡特性分析[J]. 东北电力大学学报, 2022, 42(4): 70-78. Liu Cheng, Wang Xu, Zhang Yuchi.Analysis of power oscillation characteristics of permanent magnet wind turbine power grid based on load mode energy[J]. Journal of Northeast Electric Power University, 2022, 42(4): 70-78. [12] 王志文, 孙华东, 易俊, 等. 利用发电机转速实时识别两群暂态功角失稳[J]. 电网技术, 2020, 44(7): 2634-2641. Wang Zhiwen, Sun Huadong, Yi Jun, et al.Real-time identification of transient angle instability in\r two machine groups using angular velocities[J]. Power System Technology, 2020, 44(7): 2634-2641. [13] 汤涌. 基于响应的电力系统广域安全稳定控制[J]. 中国电机工程学报, 2014, 34(29): 5041-5050. Tang Yong.Response-based wide area control for power system security and stability[J]. Proceedings of the CSEE, 2014, 34(29): 5041-5050. [14] 许树楷, 谢小荣, 辛耀中. 基于同步相量测量技术的广域测量系统应用现状及发展前景[J]. 电网技术, 2005, 29(2): 44-49. Xu Shukai, Xie Xiaorong, Xin Yaozhong.Present application situation and development tendency of synchronous phasor measurement technology based wide area measurement system[J]. Power System Technology, 2005, 29(2): 44-49. [15] Zuhaib M, Rihan M, Saeed M T.A novel method for locating the source of sustained oscillation in power system using synchrophasors data[J]. Protection and Control of Modern Power Systems, 2020, 5(4): 1-12. [16] 谢欢, 张保会, 于广亮, 等. 基于相轨迹凹凸性的电力系统暂态稳定性识别[J]. 中国电机工程学报, 2006, 26(5): 38-42. Xie Huan, Zhang Baohui, Yu Guangliang, et al.Power system transient stability detection theory based on characteristic concave or convex of trajectory[J]. Proceedings of the CSEE, 2006, 26(5): 38-42. [17] 郑超, 苗田, 马世英. 基于关键支路受扰轨迹凹凸性的暂态稳定判别及紧急控制[J]. 中国电机工程学报, 2016, 36(10): 2600-2610. Zheng Chao, Miao Tian, Ma Shiying.Transient stability identification and emergency control based on the convex characteristic of the key branch’s disturbed trajectory[J]. Proceedings of the CSEE, 2016, 36(10): 2600-2610. [18] 郑超, 孙华东, 李惠玲. 基于响应的支路暂态输电能力指数及紧急控制[J]. 中国电机工程学报, 2021, 41(2): 581-591. Zheng Chao, Sun Huadong, Li Huiling.Response-based branch transient transmission capability index and transient stability emergency control[J]. Pro-ceedings of the CSEE, 2021, 41(2): 581-591. [19] 马世英, 朱存浩, 郑超, 等. 扩展相轨迹特征解析及暂态稳定判别方法研究[J]. 中国电机工程学报, 2020, 40(20): 6516-6526. Ma Shiying, Zhu Cunhao, Zheng Chao, et al.Analysis of extended phase trajectory characteristics and transient stability identification[J]. Proceedings of the CSEE, 2020, 40(20): 6516-6526. [20] 宋方方, 毕天姝, 杨奇逊. 基于暂态能量变化率的电力系统多摆稳定性判别新方法[J]. 中国电机工程学报, 2007, 27(16): 13-18. Song Fangfang, Bi Tianshu, Yang Qixun.Multi-swing stability assessment approach based on variation rate of transient energy for power systems[J]. Proceedings of the CSEE, 2007, 27(16): 13-18. [21] 魏少攀, 杨明, 韩学山, 等. 一种利用机端电压幅值轨迹MLE指标的暂态功角稳定在线辨识方法[J]. 中国电机工程学报, 2017, 37(13): 3775-3786. Wei Shaopan, Yang Ming, Han Xueshan, et al.An online identification method for transient angle stability using MLE index of generator terminal voltage amplitude trajectory[J]. Proceedings of the CSEE, 2017, 37(13): 3775-3786. [22] 孙辉, 孙宝硕, 高正男, 等. 基于量测数据时序谱分布特性的电力系统暂态功角稳定在线判别[J]. 电网技术, 2023, 47(3): 1107-1116. Sun Hui, Sun Baoshuo, Gao Zhengnan, et al.Online identification for power system transient angle stability based on time-series spectral distribution characteristics of measured data[J]. Power System Technology, 2023, 47(3): 1107-1116. [23] 刘玉田, 林飞. 基于相量测量技术和模糊径向基网络的暂态稳定性预测[J]. 中国电机工程学报, 2000, 20(2): 19-23. Liu Yutian, Lin Fei.Application of PMU and fuzzy radial basis function network to power system transient stability prediction[J]. Proceedings of the CSEE, 2000, 20(2): 19-23. [24] 叶圣永, 王晓茹, 刘志刚, 等. 基于支持向量机的暂态稳定评估双阶段特征选择[J]. 中国电机工程学报, 2010, 30(31): 28-34. Ye Shengyong, Wang Xiaoru, Liu Zhigang, et al.Dual-stage feature selection for transient stability assessment based on support vector machine[J]. Proceedings of the CSEE, 2010, 30(31): 28-34. [25] 石访, 张林林, 胡熊伟, 等. 基于多属性决策树的电网暂态稳定规则提取方法[J]. 电工技术学报, 2019, 34(11): 2364-2374. Shi Fang, Zhang Linlin, Hu Xiongwei, et al.Power system transient stability rules extraction based on multi-attribute decision tree[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2364-2374. [26] 杨浩, 伍柏臻, 刘铖, 等. 基于暂态关键特征逻辑推理的复杂电网响应驱动暂态稳定性判别[J]. 电工技术学报, 2024, 39(13): 3943-3955. Yang Hao, Wu Baizhen, Liu Cheng, et al.Response-driven transient stability assessment for complex power grids based on logical reasoning with transient key feature[J]. Transactions of China Electrotechnical Society, 2024, 39(13): 3943-3955. [27] 毛安家, 郭志忠, 张学松. 一种基于广域测量系统过程量测数据的快速暂态稳定预估方法[J]. 中国电机工程学报, 2006, 26(17): 38-43. Mao Anjia, Guo Zhizhong, Zhang Xuesong.A fast transient stability predicting method based on the WAMS process measurement data[J]. Proceedings of the CSEE, 2006, 26(17): 38-43. [28] 李琰, 周孝信, 周京阳. 基于引入虚拟负荷的发电机暂态稳定预测[J]. 电工技术学报, 2008, 23(3): 103-107, 130. Li Yan, Zhou Xiaoxin, Zhou Jingyang.The generator transient stability prediction based on additional virtual loads[J]. Transactions of China Electro-technical Society, 2008, 23(3): 103-107, 130. [29] 彭疆南, 孙元章, 王海风. 基于广域量测数据和导纳参数在线辨识的受扰轨迹预测[J]. 电力系统自动化, 2003, 27(22): 6-11. Peng Jiangnan, Sun Yuanzhang, Wang Haifeng.Research on the perturbed trajectories prediction based on wide-area measurement and on-line admittance matrix identification[J]. Automation of Electric Power Systems, 2003, 27(22): 6-11. [30] 王增平, 朱劭璇, 王彤, 等. 基于故障全景信息的电力系统暂态稳定分析方法[J]. 电力系统保护与控制, 2020, 48(15): 34-42. Wang Zengping, Zhu Shaoxuan, Wang Tong, et al.Transient stability analysis for a power system based on fault panoramic information[J]. Power System Protection and Control, 2020, 48(15): 34-42. [31] 朱存浩, 马世英, 郑超, 等. 基于实测响应轨迹的电力系统暂态不稳定判别[J]. 中国电机工程学报, 2021, 41(15): 5077-5090. Zhu Cunhao, Ma Shiying, Zheng Chao, et al.Power system transient instability identification based on real-time response trajectory[J]. Proceedings of the CSEE, 2021, 41(15): 5077-5090. [32] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [33] 刘道伟, 马世英, 李柏青, 等. 基于响应的电网暂态稳定态势在线量化评估方法[J]. 中国电机工程学报, 2013, 33(4): 85-95. Liu Daowei, Ma Shiying, Li Baiqing, et al.Quanti-tative method for on-line power system transient stability assessment based on response information[J]. Proceedings of the CSEE, 2013, 33(4): 85-95.