Shipboard Medium-Voltage DC Integrated Power System Ⅰ: System Architecture and Power Electronic Converter
Yang Yayu1,2, Tai Nengling2,3, Huang Wentao2, Ma Jianjun3, Fang Sidun4
1. Logistics Engineering College Shanghai Maritime University Shanghai 201306 China; 2. Key Laboratory of Control of Power Transmission and Conversion Ministry of Education Shanghai Jiao Tong University Shanghai 200240 China; 3. College of Smart Energy Shanghai Jiao Tong University Shanghai 200240 China; 4. School of Electrical Engineering Chongqing University Chongqing 400044 China
Abstract:Shipboard integrated power system (IPS) is an important revolution of shipboard power system, which has a cross-era significance. However, with the increasement of the shipboard IPS capacity, the conventional low-voltage level shipboard IPS can hardly meet the power demand of shipboard power equipment. The shipboard medium-voltage DC (MVDC) IPS has the advantages of high power density, high operation efficiency, high operation flexibility and high operation reliability, and thus has received widespread attention in recent years. As the first part, this paper focuses on the system architecture and power electronic converter of the shipboard MVDC IPS. Firstly, this paper analyzes the development trends of the shipboard IPS, and makes a comprehensive review of the special system architecture of the shipboard MVDC IPS from the perspectives of topology architecture, voltage level, wire connection type, and grounding mode. (1) Topology architecture. The radial topology is simple, and its system construction cost is low; the zonal topology has high redundancy, good flexibility, and high reliability. (2) Voltage level. With the improvement of shipboard IPS capacity, the voltage level of the shipboard MVDC IPS may reach 24 kV or 30 kV in the future. (3) Wire connection type. Monopole symmetrical connection type is suitable for most shipboard MVDC IPS; for large ship with high power supply reliability requirements, bipolar connection type is better. (4) Grounding mode. For the AC side of the power supply end, the shipboard medium voltage power grid adopts the mode of grounding with large resistor; for the DC side of the load end, the grounding mode of the shipboard MVDC IPS can refer to the grounding mode of the onshore DC microgrid; for the DC side of the power supply end, the mode of grounding with resistors is better. Then, according to the existing literature, the key power electronic converters in shipboard MVDC IPS, such as the rectifier for generator, the inverter for propulsion motor, and the DC-DC converter, are comprehensive reviewed, and detailed comparisons are made. (1) Rectifier for generator. The diode rectifier has the advantages of low cost, simple structure, no complex control, high reliability, low power loss and small space occupation. The diode rectifier can be used as the rectifier for the shipboard MVDC IPS generator. (2) Inverter for propulsion motor. Modular multilevel converter (MMC) has good performance. However, when the MMC for propulsion motor is operating at low speeds (especially with high-torque load), the voltage fluctuates greatly. In comparison, the two-level voltage source converter (VSC) has lower costs, more mature technology, and higher reliability. (3) DC-DC converter. Currently, SiC-based medium voltage DC-DC converters are not commercially available. For three-level/five-level DC-DC converters, the capacitor voltage equalization problem still needs to be studied in the future. The input-series output-parallel (ISOP) DAB and MMC DC-DC converter have strong scalability and fault tolerant operation capability, and they are feasible shipboard MVDC IPS DC-DC converters. Finally, the typical differences between the shipboard MVDC IPS and the onshore DC microgrid are summarized, and the latest technical standards for shipboard MVDC IPS are sorted out. As the first part, this paper is the basis for the second part: protection and fault management technology.
杨亚宇, 邰能灵, 黄文焘, 马建军, 方斯顿. 船舶中压直流综合电力系统(一):系统结构和电力电子变换器[J]. 电工技术学报, 2024, 39(21): 6647-6665.
Yang Yayu, Tai Nengling, Huang Wentao, Ma Jianjun, Fang Sidun. Shipboard Medium-Voltage DC Integrated Power System Ⅰ: System Architecture and Power Electronic Converter. Transactions of China Electrotechnical Society, 2024, 39(21): 6647-6665.
[1] 马伟明. 舰船动力发展的方向: 综合电力系统[J]. 上海海运学院学报, 2004, 25(1): 1-11. [2] 陈少先, 丁树业, 申淑锋, 等. 船舶用表贴式永磁同步电机的电磁振动分析与抑制[J]. 电工技术学报, 2023, 38(5): 1275-1286, 1298. Chen Shaoxian, Ding Shuye, Shen Shufeng, et al.Analysis and suppression of electromagnetic vibration of surface mounted permanent magnet synchronous motor for ships[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1275-1286, 1298. [3] Wang Gang, Xiao Runlong, Wu Xiaokang.Analysis of integrated power system with pulse load by periodic orbit[J]. IEEE Transactions on Plasma Science, 2019, 47(2): 1345-1351. [4] Liu Qianyi, Liu Fang, Zou Runmin, et al.A compact-design oriented shipboard power supply system with transformer integrated filtering method[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 2089-2099. [5] An Bonan, Li Yong, Xie Bin, et al.A new DC multipulse integrated shipboard power supply system and performance analysis referring to transformer noninteger turns ratio deviation[J]. IEEE Transactions on Power Electronics, 2021, 36(1): 353-363. [6] 庄绪州, 张勤进, 刘彦呈, 等. 船舶全电力推进系统恒功率负载有源阻尼控制策略[J]. 电工技术学报, 2020, 35(增刊1): 101-109. Zhuang Xuzhou, Zhang Qinjin, Liu Yancheng, et al.An active damping control of constant power load for all-electric ships[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 101-109. [7] Doerry N, McCoy K. Next generation integrated power system: NGIPS technology development roadmap[R]. Washington DC: Naval Sea Systems Command, 2007. [8] 李维波, 郝春昊, 高佳俊, 等. 舰船综合电力系统发展综述[J]. 中国舰船研究, 2020, 15(6): 1-11. Li Weibo, Hao Chunhao, Gao Jiajun, et al.Overview of the development of shipboard integrated power system[J]. Chinese Journal of Ship Research, 2020, 15(6): 1-11. [9] ABB AS. Onboard DC grid-a system platform at the heart of Shipping 4.0[Z/OL].2017. https://search.abb.com/library/Download.aspx?DocumentID=9AKK107045A7595&DocumentPartId=. [10] 张志旺, 曹莉. ABB船载直流电网系统浅析[J]. 船舶, 2018, 29(4): 61-66. Zhang Zhiwang, Cao Li.Analysis of ABB onboard DC grid system[J]. Ship & Boat, 2018, 29(4): 61-66. [11] 付立军, 刘鲁锋, 王刚, 等. 我国舰船中压直流综合电力系统研究进展[J]. 中国舰船研究, 2016, 11(1): 72-79. Fu Lijun, Liu Lufeng, Wang Gang, et al.The research progress of the medium voltage DC integrated power system in China[J]. Chinese Journal of Ship Research, 2016, 11(1): 72-79. [12] IEEE Industry Applications Society, IEEE Power Electronics Society. IEEE recommended practice for 1 kV to 35 kV medium-voltage DC power systems on ships: IEEE Std 1709—2018[S]. New York: IEEE, 2018. [13] Sulligoi G, Vicenzutti A, Menis R.All-electric ship design: from electrical propulsion to integrated electrical and electronic power systems[J]. IEEE Transactions on Transportation Electrification, 2016, 2(4): 507-521. [14] Bosich D, Vicenzutti A, Pelaschiar R, et al.Toward the future: the MVDC large ship research program[C]// 2015 AEIT International Annual Conference (AEIT), Naples, Italy, 2016: 1-6. [15] 马伟明. 电力电子在舰船电力系统中的典型应用[J]. 电工技术学报, 2011, 26(5): 1-7. Ma Weiming.Typical applications of power electronics in naval ship power systems[J]. Transactions of China Electrotechnical Society, 2011, 26(5): 1-7. [16] 肖润龙, 王刚, 李子梦, 等. 中压直流输电直流区域配电综合电力系统静态状态估计方法研究[J]. 电工技术学报, 2018, 33(13): 3023-3033. Xiao Runlong, Wang Gang, Li Zimeng, et al.Static estimation of the integrated power system with medium voltage DC and DC zonal distribution system[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3023-3033. [17] Doerry N, Amy J, Krolick C.History and the status of electric ship propulsion, integrated power systems, and future trends in the U.S. navy[J]. Proceedings of the IEEE, 2015, 103(12): 2243-2251. [18] 戴志辉, 陈思琦, 李毅然, 等. 复杂环状柔直配电网单极断线故障特性分析[J]. 电工技术学报, 2022, 37(5): 1229-1241. Dai Zhihui, Chen Siqi, Li Yiran, et al.Characteristic analysis of single-pole breakage fault in complex ring flexible DC distribution systems[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1229-1241. [19] 李博通, 刘涛, 杨昕陆, 等. 故障自清除型直流配电网新型双极短路故障元件识别方法[J]. 电工技术学报, 2022, 37(17): 4423-4434. Li Botong, Liu Tao, Yang Xinlu, et al.New fault element identification method of bipolar short-circuit fault in DC distribution network with fault self-clearing[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4423-4434. [20] 何大禄, 廖建权, 王强钢. 基于三有源桥串并联直流潮流控制器的环形双极直流配电网不平衡潮流抑制[J]. 电工技术学报, 2022, 37(11): 2837-2848. He Dalu, Liao Jianquan, Wang Qianggang.Triple active bridge power flow controller based unbalanced power flow suppression for ring bipolar DC distribution network[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2837-2848. [21] 年珩, 孔亮. 直流微电网故障保护技术研究综述[J]. 高电压技术, 2020, 46(7): 2241-2254. Nian Heng, Kong Liang.Review on fault protection technologies of DC microgrid[J]. High Voltage Engineering, 2020, 46(7): 2241-2254. [22] Stevens B, Santoso S.Reliability analysis of a shipboard electrical power distribution system based on breaker-and-a-half topology[C]//2013 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, USA, 2013: 387-393. [23] Stevens B, Dubey A, Santoso S.On improving reliability of shipboard power system[J]. IEEE Transactions on Power Systems, 2015, 30(4): 1905-1912. [24] Jothibasu S, Santoso S.Resiliency improvement of electric shipboard power system[C]//2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 2018: 1-5. [25] Jothibasu S, Santoso S.New electric shipboard topologies for high resiliency[J]. IEEE Transactions on Power Systems, 2018, 33(3): 2975-2983. [26] Xu Luona, Guerrero J M, Lashab A, et al.A review of DC shipboard microgrids—part I: power architectures, energy storage, and power converters[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5155-5172. [27] 刘计龙, 朱志超, 肖飞, 等. 一种面向舰船综合电力系统的模块化三端口直流变换器[J]. 电工技术学报, 2020, 35(19): 4085-4096. Liu Jilong, Zhu Zhichao, Xiao Fei, et al.A modular three-port DC-DC converter for vessel integrated power system[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4085-4096. [28] 徐政, 肖晃庆, 张哲任. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017. [29] Magg T G, Mutschler H D, Nyberg S, et al.Caprivi link HVDC interconnector: site selection, geophysical investigations, interference impacts and design of the earth electrodes[R]. Paris: CIGRE, 2010. [30] 熊雄, 季宇, 李蕊, 等. 直流配用电系统关键技术及应用示范综述[J]. 中国电机工程学报, 2018, 38(23): 6802-6813, 7115. Xiong Xiong, Ji Yu, Li Rui, et al.An overview of key technology and demonstration application of DC distribution and consumption system[J]. Proceedings of the CSEE, 2018, 38(23): 6802-6813, 7115. [31] 马钊, 焦在滨, 李蕊. 直流配电网络架构与关键技术[J]. 电网技术, 2017, 41(10): 3348-3357. Ma Zhao, Jiao Zaibin, Li Rui.Network structures and key technologies of DC distribution systems[J]. Power System Technology, 2017, 41(10): 3348-3357. [32] 吴卫民, 何远彬, 耿攀, 等. 直流微网研究中的关键技术[J]. 电工技术学报, 2012, 27(1): 98-106, 113. Wu Weimin, He Yuanbin, Geng Pan, et al.Key technologies for DC micro-grids[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 98-106, 113. [33] 薛士敏, 齐金龙, 刘冲. 直流微网保护综述[J]. 中国电机工程学报, 2016, 36(13): 3404-3412, 3359. Xue Shimin, Qi Jinlong, Liu Chong.A research review of protection for DC microgrid[J]. Proceedings of the CSEE, 2016, 36(13): 3404-3412, 3359. [34] Reinhart T R.High resistance grounding for marine applications[C]//Marine Electrical Standards Meeting, Canadian Coast Guard, Ottawa, Canada, 1986. [35] Nelson J P, Burns D, Seitz R, et al.The grounding of marine power systems: problems and solutions[C]// Fifty-First Annual Conference 2004 Petroleum and Chemical Industry Technical Conference, San Francisco, CA, USA, 2004: 151-161. [36] IEEE Industry Applications Society. IEEE guide for the design and application of power electronics in electrical power systems on ships: IEEE Std 1662—2008[J]. New York: IEEE, 2009. [37] IEEE Industry Applications Society, IEEE Power Electronics Society. IEEE recommended practice for the design and application of power electronics in electrical power systems: IEEE Std 1662—2016[S]. New York: IEEE, 2017. [38] 王孔贤, 邵英, 王黎明, 等. 船舶电网单相接地故障选线方法研究综述[J]. 舰船电子工程, 2022, 42(8): 135-140. Wang Kongxian, Shao Ying, Wang Liming, et al.Review of research on single-phase grounding fault line selection methods in ship grid[J]. Ship Electronic Engineering, 2022, 42(8): 135-140. [39] 吴峻, 武迪, 朱金大, 等. 多端柔性直流配电网接地方式设计[J]. 中国电机工程学报, 2017, 37(9): 2551-2561. Wu Jun, Wu Di, Zhu Jinda, et al.Grounding method design of multi-terminal flexible DC distribution[J]. Proceedings of the CSEE, 2017, 37(9): 2551-2561. [40] 刘宝稳, 万子雄, 曾祥君, 等. 基于有源消弧暂态衰减信息的配电网接地故障跟踪检测方法[J]. 中国电机工程学报, 2024, 44(2): 464-476. Liu Baowen, Wan Zixiong, Zeng Xiangjun, et al.Ground fault tracking and detection of distribution network based on active arc-suppression transient attention information[J]. Proceedings of the CSEE, 2024, 44(2): 464-476. [41] 王晓卫, 高杰, 吴磊, 等. 柔性直流配电网高阻接地故障检测方法[J]. 电工技术学报, 2019, 34(13): 2806-2819. Wang Xiaowei, Gao Jie, Wu Lei, et al.A high impedance fault detection method for flexible DC distribution network[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2806-2819. [42] 李潇, 范春菊, 王国钰, 等. 两端电源供电交直流混合配电网直流侧故障特征和接地方式[J]. 电力系统自动化, 2022, 46(11): 161-169. Li Xiao, Fan Chunju, Wang Guoyu, et al.DC-side fault characteristics and grounding mode of hybrid AC/DC distribution network with two-terminal power supply[J]. Automation of Electric Power Systems, 2022, 46(11): 161-169. [43] 张一, 张佰富, 韩肖清, 等. 直流侧电容中点接地的混合微电网故障传播机理[J]. 电工技术学报, 2023, 38(15): 4208-4220. Zhang Yi, Zhang Baifu, Han Xiaoqing, et al.Fault propagation mechanism of hybrid microgrid with neutral grounding of DC side capacitor[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 4208-4220. [44] 鲁国正, 高亮, 梁智敏. 电压源换流器接地方式对直流配电系统的影响[J]. 电力系统保护与控制, 2016, 44(12): 75-80. Lu Guozheng, Gao Liang, Liang Zhimin.Influence of voltage source converter grounding mode on DC distribution system[J]. Power System Protection and Control, 2016, 44(12): 75-80. [45] 李蕊, 罗飞, 焦在滨. 中压直流配电系统接地方式研究[J]. 电网技术, 2018, 42(8): 2594-2603. Li Rui, Luo Fei, Jiao Zaibin.Grounding mode research of MV DC distribution system[J]. Power System Technology, 2018, 42(8): 2594-2603. [46] 李春, 马凡, 付立军, 等. 十二脉波不控整流器直流单极接地短路的动态数学模型[J]. 电工技术学报, 2020, 35(7): 1529-1537. Li Chun, Ma Fan, Fu Lijun, et al.Dynamic mathematical model of twelve-pulse diode rectifier with pole-to-ground DC fault[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1529-1537. [47] 黄河, 马凡, 付立军, 等. 十二相整流发电机并联供电系统直流中点环流特性及其抑制方法[J]. 电工技术学报, 2022, 37(7): 1760-1767. Huang He, Ma Fan, Fu Lijun, et al.DC neutral point circulating current characteristics and suppression method of twelve-phase rectifier generator parallel power supply system[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1760-1767. [48] 王景芳, 陈安臣, 姚绪梁, 等. 一种直流侧串联辅助单相整流器的24脉波整流器[J]. 中国电机工程学报, 2021, 41(23): 8120-8129. Wang Jingfang, Chen Anchen, Yao Xuliang, et al.A 24-pulse rectifier with an auxiliary single-phase rectifier in series at DC side[J]. Proceedings of the CSEE, 2021, 41(23): 8120-8129. [49] Wang Yunchao, Yu Zhanqing, He Jinliang, et al.Performance of shipboard medium-voltage DC system of various grounding modes under monopole ground fault[J]. IEEE Transactions on Industry Applications, 2015, 51(6): 5002-5009. [50] Castellan S, Menis R, Tessarolo A, et al.A review of power electronics equipment for all-electric ship MVDC power systems[J]. International Journal of Electrical Power & Energy Systems, 2018, 96: 306-323. [51] 刘汉宇, 王伟. 电力电子化趋势下的舰船电力系统面临的主要问题[J]. 船舶, 2019, 30(2): 93-99. Liu Hanyu, Wang Wei.Major problems of ship power system with development of power electronicization[J]. Ship & Boat, 2019, 30(2): 93-99. [52] 牟进友. 船舶中压直流电网的短路故障保护研究[D]. 哈尔滨: 哈尔滨工程大学, 2021. Mou Jinyou.Research on short circuit fault protection of ship medium voltage DC power grid[D]. Harbin: Harbin Engineering University, 2021. [53] Sulligoi G, Tessarolo A, Benucci V, et al.Shipboard power generation: design and development of a medium-voltage dc generation system[J]. IEEE Industry Applications Magazine, 2013, 19(4): 47-55. [54] Strank S, Feng X, Gattozzi A, et al.Experimental test bed to de-risk the navy advanced development model[C]//2017 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, USA, 2017: 352-358. [55] 陈淼, 贾科, 陈聪, 等. 基于高频阻抗曲线匹配的混合直流输电线路纵联保护[J]. 电力系统自动化, 2021, 45(12): 119-125. Chen Miao, Jia Ke, Chen Cong, et al.Pilot protection for hybrid DC transmission line based on high-frequency impedance curve matching[J]. Automation of Electric Power Systems, 2021, 45(12): 119-125. [56] 张晨浩, 宋国兵, 董新洲, 等. 混合多端直流输电线路快速保护及自适应重启方法实用化研究[J]. 中国电机工程学报, 2021, 41(11): 3873-3885. Zhang Chenhao, Song Guobing, Dong Xinzhou, et al.Application research on fast line protection and adaptive restarting methods for multi-terminal hybrid LCC/MMC HVDC transmission lines[J]. Proceedings of the CSEE, 2021, 41(11): 3873-3885. [57] 刘剑, 邰能灵, 范春菊, 等. 柔性直流输电线路故障处理与保护技术评述[J]. 电力系统自动化, 2015, 39(20): 158-167. Liu Jian, Tai Nengling, Fan Chunju, et al.Comments on fault handling and protection technology for VSCHVDC transmission lines[J]. Automation of Electric Power Systems, 2015, 39(20): 158-167. [58] Dong Dong, Pan Yan, Lai Rixin, et al.Active fault-current foldback control in thyristor rectifier for DC shipboard electrical system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 203-212. [59] Chen Yongyang, Pan Shangzhi, Huang Meng, et al.MMC-MTDC transmission system with partially hybrid branches[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(2): 124-132. [60] Park D, Zadeh M.Modeling and predictive control of shipboard hybrid DC power systems[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 892-904. [61] Li Shan, Chen Lin, Yang Pingxi, et al.System control strategy of an MMC-based PMSG rectifier for ship MVDC integrated power system[C]//2019 IEEE Electric Ship Technologies Symposium (ESTS), Washington, DC, USA, 2019: 195-200. [62] McCoy T J. Trends in ship electric propulsion[C]// IEEE Power Engineering Society Summer Meeting, Chicago, IL, USA, 2005: 343-346. [63] Thantirige K, Rathore A K, Panda S K, et al.Medium voltage multilevel converters for ship electric propulsion drives[C]//2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), Aachen, Germany, 2015: 1-7. [64] 章以刚, 赵芳. 现代舰船综合电力系统[M]. 哈尔滨: 哈尔滨工程大学出版社, 2018. [65] Zohrabi N, Shi Jian, Abdelwahed S.An overview of design specifications and requirements for the MVDC shipboard power system[J]. International Journal of Electrical Power & Energy Systems, 2019, 104: 680-693. [66] Zhu Wanlu, Shi Jian, Abdelwahed S.End-to-end system level modeling and simulation for medium-voltage DC electric ship power systems[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(1): 37-47. [67] 郭燚, 王超, 解文祥. 用于船舶永磁推进电机驱动控制的MMC模型预测方法[J]. 中国舰船研究, 2021, 16(4): 179-189, 198. Guo Yi, Wang Chao, Xie Wenxiang.MMC model predictive control method applied to ship permanent magnet propulsion motor drive[J]. Chinese Journal of Ship Research, 2021, 16(4): 179-189, 198. [68] 郭燚, 赵怡波, 赵燃. 不对称全桥飞跨电容型MMC在船舶推进电机中的应用[J]. 中国舰船研究, 2019, 14(6): 37-47. Guo Yi, Zhao Yibo, Zhao Ran.Application of asymmetric full-bridge flying-capacitor MMC in marine propulsion motor[J]. Chinese Journal of Ship Research, 2019, 14(6): 37-47. [69] Ronanki D, Williamson S S.A simplified space vector pulse width modulation implementation in modular multilevel converters for electric ship propulsion systems[J]. IEEE Transactions on Transportation Electrification, 2019, 5(1): 335-342. [70] Wang Kui, Li Yongdong, Zheng Zedong, et al.Voltage balancing and fluctuation-suppression methods of floating capacitors in a new modular multilevel converter[J]. IEEE Transactions on Industrial Electronics, 2013, 60(5): 1943-1954. [71] Hagiwara M, Nishimura K, Akagi H.A medium-voltage motor drive with a modular multilevel PWM inverter[J]. IEEE Transactions on Power Electronics, 2010, 25(7): 1786-1799. [72] Wang Ze, Chen Jimin, Liao Kaiwen, et al.Review on low-frequency ripple suppression methods for MMCs for medium-voltage drive applications[J]. IET Power Electronics, 2018, 11(15): 2403-2414. [73] 吴浩伟, 蔡久青, 汪文涛, 等. 中压大功率三电平变流应用与研究[J]. 舰船科学技术, 2019, 41(17): 90-94. Wu Haowei, Cai Jiuqing, Wang Wentao, et al.An application and research overview of a middle-voltage high-power three-level inverter[J]. Ship Science and Technology, 2019, 41(17): 90-94. [74] Kouro S, Malinowski M, Gopakumar K, et al.Recent advances and industrial applications of multilevel converters[J]. IEEE Transactions on Industrial Electronics, 2010, 57(8): 2553-2580. [75] Malinowski M, Gopakumar K, Rodriguez J, et al.A survey on cascaded multilevel inverters[J]. IEEE Transactions on Industrial Electronics, 2010, 57(7): 2197-2206. [76] 方华松, 王奎, 刘念洲, 等. 10kV中压直流电力推进变频器拓扑与控制策略[J]. 船电技术, 2020, 40(2): 12-17. Fang Huasong, Wang Kui, Liu Nianzhou, et al.Topology and control strategy of inverter for 10kV DC medium voltage integrated electric propulsion system of ship[J]. Marine Electric & Electronic Engineering, 2020, 40(2): 12-17. [77] 刘贝, 涂春鸣, 肖凡, 等. 中低压直流变压器拓扑与控制综述[J]. 电力自动化设备, 2021, 41(5): 232-246. Liu Bei, Tu Chunming, Xiao Fan, et al.Review of topology and control strategy of medium-and low-voltage DC transformer[J]. Electric Power Automation Equipment, 2021, 41(5): 232-246. [78] Ullah B, Ullah H, Khalid S.Direct model predictive control of noninverting buck-boost DC-DC converter[J]. CES Transactions on Electrical Machines and Systems, 2022, 6(3): 332-339. [79] Alharbi S S, Matin M.Experimental evaluation of medium-voltage cascode gallium nitride (GaN) devices for bidirectional DC-DC converters[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(3): 232-248. [80] 高宇, 李若愚, 李林柘, 等. 三重移相调制模式下双有源变换器的直接功率控制[J]. 电工技术学报, 2022, 37(18): 4707-4719. Gao Yu, Li Ruoyu, Li Linzhe, et al.Triple phase shift modulation-based direct power control strategy for a dual active bridge converter[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4707-4719. [81] 王武, 雷文浩, 蔡逢煌, 等. 结合电流应力优化的双有源全桥DC-DC变换器自抗扰控制[J]. 电工技术学报, 2022, 37(12): 3073-3086. Wang Wu, Lei Wenhao, Cai Fenghuang, et al.Active disturbance rejection control of dual-active-bridge DC-DC converter with current stress optimization[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 3073-3086. [82] 刘赞, 沙金, 邱高峰, 等. 多级离散扩展移相控制双有源桥DC-DC变换器的原理、参数设计与性能[J]. 电工技术学报, 2024, 39(12): 3761-3773. Liu Zan, Sha Jin, Qiu Gaofeng, et al.Principle, parameters design and performance of multistage discrete extended-phase-shift control dual active bridge DC-DC converters[J]. Transactions of China Electrotechnical Society, 2024, 39(12): 3761-3773. [83] 梁美, 郑琼林, 可翀, 等. SiC MOSFET、Si CoolMOS和IGBT的特性对比及其在DAB变换器中的应用[J]. 电工技术学报, 2015, 30(12): 41-50. Liang Mei, Zheng Q T, Ke Chong, et al.Performance comparison of SiC MOSFET, Si CoolMOS and IGBT for DAB converter[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 41-50. [84] 阮新波, 李斌, 陈乾宏. 一种适用于高压大功率变换器的三电平直流变换器[J]. 中国电机工程学报, 2003, 23(5): 19-23. Ruan Xinbo, Li Bin, Chen Qianhong.A new approach for high voltage and high power three-level DC-DC conversion[J]. Proceedings of the CSEE, 2003, 23(5): 19-23. [85] Wang Yi, Wen Huiqing, Zhu Yinxiao, et al.Minimum-current-stress scheme of three-level dual-active-bridge DC-DC converters with the particle swarm optimization[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2067-2084. [86] Zhang Fan, Ren Yu, Yang Xu, et al.Capacitor voltage balancing control for a novel 5-level dual active bridge converter[J]. IEEE Transactions on Power Electronics, 2022, 37(12): 14738-14754. [87] 盛况, 郭清, 张军明, 等. 碳化硅电力电子器件在电力系统的应用展望[J]. 中国电机工程学报, 2012, 32(30): 1-7. Sheng Kuang, Guo Qing, Zhang Junming, et al.Development and prospect of SiC power devices in power grid[J]. Proceedings of the CSEE, 2012, 32(30): 1-7. [88] Rødal G, Peftitsis D.Design challenges of a SiC-based MVDC power supply for deep-sea applications[C]// 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 -ECCE Asia), Busan, Korea (South), 2019: 2368-2375. [89] Belkhode S, Ratanpuri G, Mandal S, et al.Investigation of the five-level hybrid active NPC-based dual-active-bridge converter for EV battery charging applications[C]//2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2022: 1-7. [90] Wang Li, Zhu Qianlai, Yu Wensong, et al.A medium-voltage medium-frequency isolated DC-DC converter based on 15-kV SiC MOSFETs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 100-109. [91] 姚金杰. 应用于中压直流配电网的直流变压器研究[D]. 南京: 东南大学, 2021. Yao Jinjie.Study on DC transformer applied in medium voltage DC distribution network[D]. Nanjing: Southeast University, 2021. [92] Carrizosa M J, Benchaib A, Alou P, et al.DC transformer for DC/DC connection in HVDC network[C]//2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2013: 1-10. [93] Chen Peng, Xiao Fei, Liu Jilong, et al.Unbalanced operation principle and fast balancing charging strategy of a cascaded modular multilevel converter-bidirectional DC-DC converter in the shipboard applications[J]. IEEE Transactions on Transportation Electrification, 2020, 6(3): 1265-1278. [94] 徐硕, 马智远, 许中, 等. ISOP-DAB的均压均流控制方法综述[J]. 北京交通大学学报, 2021, 45(6): 1-9. Xu Shuo, Ma Zhiyuan, Xu Zhong, et al.Review of voltage and current sharing control methods for ISOP-DAB[J]. Journal of Beijing Jiaotong University, 2021, 45(6): 1-9. [95] 程璐璐, 阮新波, 章涛. 输入串联输出并联的直流变换器控制策略研究[J]. 中国电机工程学报, 2006, 26(22): 67-73. Cheng Lulu, Ruan Xinbo, Zhang Tao.Control strategy for input-series output-paralleled DC-DC converters[J]. Proceedings of the CSEE, 2006, 26(22): 67-73. [96] Kim S H, Kim B J, Won C Y.A study on decentralized inverse-droop control for input voltage sharing of ISOP converter in the current control loop[C]//2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 -ECCE Asia), Busan, Korea (South), 2019: 2382-2387. [97] 陈武, 曹远志, 崔红芬, 等. 模块化输入串联输出串联高压直流组合系统分布式均压控制策略[J]. 电工技术学报, 2015, 30(3): 187-195. Chen Wu, Cao Yuanzhi, Cui Hongfen, et al.Modular input-series output-series DC high voltage system with distributed voltage sharing control strategy[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 187-195. [98] Sha Deshang, Guo Zhiqiang, Liao Xiaozhong.Cross-feedback output-current-sharing control for input-series-output-parallel modular DC-DC converters[J]. IEEE Transactions on Power Electronics, 2010, 25(11): 2762-2771. [99] 裘迅, 杨双景, 方宇, 等. 交错串联-并联双管正激变换器的一种均压方法[J]. 中国电机工程学报, 2008, 28(24): 1-6. Qiu Xun, Yang Shuangjing, Fang Yu, et al.Voltage sharing control for interleaved series-parallel dual two-transistor forward converters[J]. Proceedings of the CSEE, 2008, 28(24): 1-6. [100] Montesinos-Miracle D, Massot-Campos M, Bergas-Jane J, et al.Design and control of a modular multilevel DC/DC converter for regenerative applications[J]. IEEE Transactions on Power Electronics, 2013, 28(8): 3970-3979. [101] Zhao Biao, Song Qiang, Li Jianguo, et al.High-frequency-link modulation methodology of DC-DC transformer based on modular multilevel converter for HVDC application: comprehensive analysis and experimental verification[J]. IEEE Transactions on Power Electronics, 2016, 32(5): 3413-3424. [102] Kenzelmann S, Rufer A, Dujic D, et al.Isolated DC/DC structure based on modular multilevel converter[J]. IEEE Transactions on Power Electronics, 2015, 30(1): 89-98. [103] Mo Ran, Li Hui.Hybrid energy storage system with active filter function for shipboard MVDC system applications based on isolated modular multilevel DC/DC converter[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 5(1): 79-87. [104] Xie Ren, Shi Yanjun, Li Hui.Modular multilevel DAB (M2DAB) converter for shipboard MVDC system with fault protection and ride-through capability[C]//2015 IEEE Electric Ship Technologies Symposium (ESTS), Old Town Alexandria, VA, USA, 2015: 427-432. [105] 李建国, 赵彪, 宋强, 等. 适用于中压直流配网的多电平直流链固态变压器[J]. 中国电机工程学报, 2016, 36(14): 3717-3726. Li Jianguo, Zhao Biao, Song Qiang, et al.DC solid state transformer based on multilevel DC link for medium-voltage DC distribution application[J]. Proceedings of the CSEE, 2016, 36(14): 3717-3726. [106] Zhao Biao, Li Xiaoqian, Wei Yingdong, et al.Modular hybrid-full-bridge DC transformer with full-process matching switching strategy for MVDC power distribution application[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 3317-3328. [107] Xie Ren, Mo Ran, Shi Yanjun, et al.Comparative study of the DC-DC power conversion module based on dual active bridge converter and modular multilevel converter for shipboard MVDC system[C]// 2017 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, USA, 2017: 36-43. [108] Utility connections inport-part 1: high voltage shore connection (HVSC) systems-general requirements: IEC/IEEE 80005-1: 2019[S]. IEC, 2019. [109] IEEE Industry Applications Society. Power electronics open system interfaces in zonal electrical distribution systems rated above 100 kW: IEEE 1826—2020[S]. New York: IEEE, 2020. [110] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 船舶中压直流电力系统通用要求: GB/T 35719—2017[S]. 北京: 中国标准出版社, 2017. [111] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 船舶直流电力系统短路电流计算方法: GB/T 35715—2017[S]. 北京: 中国标准出版社, 2018.