Abstract:With the increasing wind turbine generators integrated partially or completely through the converters, the damping capability of the power system is decreased, which will intensify the dynamic interaction among the doubly-fed induction generators (DFIGs) and the synchronous generators (SGs), and yield the power angle oscillation among the SGs. The angular oscillation is usually suppressed by the power system stabilizer (PSS) installed at the SGs. It may also be suppressed by the PSS at the DFIGs, i.e. DFIG-PSS, or by adjusting the control parameters of the DFIGs. The DFIG-PSS is often installed at the outer loop of the rotor-side converter (RSC). The control effect of the RSC may be weakened by the DFIG-PSS. Hence the control parameters of the DFIG-PSS and the RSC are to be optimized together. The parameter optimization based on the eigenvalue analysis is for small disturbances. It does not consider the system nonlinearity and large disturbance, hence is incompetent to suppress the oscillation which is usually quantified by a period of dynamic process. In this paper, a coordinated optimization model to the parameters of the DFIG-PSS and the RSC based on the trajectory sensitivity is newly proposed. The DFIG-PSS is designed to suppress the power angle oscillation by controlling the DFIGs to absorb or release the energy. The dynamic model of power system with the control strategy of the DFIG including the DFIG-PSS is derived. The intermediate variables are introduced to the differential equations to decouple the trajectory sensitivities. The Jacobian matrices of the state variables and the algebraic variables are distinguished to derive the analytical expression of the trajectory sensitivities, which is computationally efficient than deriving the trajectory sensitivities from the parameter perturbation method. Then the gradient information of the objective function with respect to the control parameters is obtained. Based on the location of the DFIG-PSS and the relation of the PI parameters, the control parameters to be optimized are decided. With the gradients, the interior-point method is applied to optimize the parameters of both the DFIG-PSS and the RSC. Based on above algorithm, the Matlab program for the dynamic control and the angular oscillation of the power system with the DFIGs is written by the authors. The simulation results on the 4-SG 2-area test system are given to verify the control effect. It is shown that the relation between the control parameters and the power angle oscillation is quantified by the gradient derived from the analytical expression of the trajectory sensitivity with desirable accuracy. After the optimization, the gain of the outer active power loop of the RSC increases, and the gain of the inner current loop decreases, which help to regulate the output of the DFIG and reduce the risk of the angular oscillation. It is also found that the parameter optimization to both the DFIG-PSS and the RSC has better effect on reducing the amplitude of the power angle difference and accelerating the convergence than optimizing the DFIG-PSS only. The proposed algorithm is beneficial to the wind turbine generators, e.g. the DFIGs, functioning similarly as the SGs and participating into the system stability control. With more and more SGs displaced by the wind turbine generators, the proposed algorithm may be applied to improve the angular and oscillational stability of the power systems.
李生虎, 张亚海, 叶剑桥, 李忆恺, 陶帝文. 基于双馈风电机组控制参数优化的电网功角振荡控制[J]. 电工技术学报, 2023, 38(5): 1325-1338.
Li Shenghu, Zhang Yahai, Ye Jianqiao, Li Yikai, Tao Diwen. Power Angle Oscillation Control of Power Grid Based on Control Parameter Optimization of Doubly-Fed Wind Turbine Generator. Transactions of China Electrotechnical Society, 2023, 38(5): 1325-1338.
[1] Ma Jing, Shen Yaqi, Phadke A G.DFIG active damping control strategy based on remodeling of multiple energy branches[J]. IEEE Transactions on Power Electronics, 2020, 36(4): 4169-4186. [2] Rosado L, Samanes J, Gubía E, et al.Robust active damping strategy for DFIG wind turbines[J]. IEEE Transactions on Power Electronics, 2021, 36(12): 14525-14538. [3] Gao Chao, Liu Hui, Jiang Hao, et al.Research on the sub-synchronous oscillation in wind power connected to series compensated power system and its influencing factors[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(3): 334-340. [4] 孙军, 蒋天龙, 王仰铭, 等. 不平衡电网下双馈感应发电机的虚拟同步机控制优化策略[J]. 电力系统自动化, 2020, 44(10): 135-144. Sun Jun, Jiang Tianlong, Wang Yangming, et al.Optimization strategy of virtual synchronous generator control for doubly-fed induction generator in unbalanced power grid[J]. Automation of Electric Power Systems, 2020, 44(10): 135-144. [5] 刘俊磊, 曹娜, 钱峰, 等. 考虑双馈风电机组变流器控制参数的风电场内机组振荡分析[J]. 电力系统自动化, 2021, 45(10): 42-49. Liu Junlei, Cao Na, Qian Feng, et al.Analysis of unit oscillation in wind farm considering control parameters of converter for DFIG-based wind turbine[J]. Automation of Electric Power Systems, 2021, 45(10): 42-49. [6] Du Wenjuan, Chen Xiao, Wang Haifeng.Impact of dynamic interactions introduced by the DFIGs on power system electromechanical oscillation modes[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4954-4967. [7] 薛安成, 王清, 毕天姝. 双馈风机与同步机小扰动功角互作用机理分析[J]. 中国电机工程学报, 2016, 36(2): 417-425. Xue Anchen, Wang Qing, Bi Tianshu.Study on the mechanism of small signal dynamic interaction between doubly-fed induction generator and synchronous generator[J]. Proceedings of the CSEE, 2016, 36(2): 417-425. [8] Morshed M J, Fekih A.A probabilistic robust coordinated approach to stabilize power oscillations in DFIG-based power systems[J]. IEEE Transactions on Industrial Informatics, 2019, 15(10): 5599-5612. [9] Zhang Chen, Ke Deping, Sun Yuanzhang, et al.Coordinated supplementary damping control of DFIG and PSS tosuppress inter-area oscillations with optimally controlled plant dynamics[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 780-791. [10] 苏田宇, 杜文娟, 王海风. 多直驱永磁同步发电机并联风电场次同步阻尼控制器降阶设计方法[J].电工技术学报, 2019, 34(1): 116-127. Su Tianyu, Du Wenjuan, Wang Haifeng.A reduced order design method for subsynchronous damping controller of multi-PMSGs parallel wind farm[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 116-127. [11] 马燕峰, 霍亚欣, 李鑫, 等. 考虑时滞影响的双馈风电场广域附加阻尼控制器设计[J].电工技术学报, 2020, 35(1): 158-166. Ma Yanfeng, Huo Yaxin, Li Xin, et al.Design of wide area additional damping controller for doubly fed wind farms considering time delays[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 158-166. [12] Bhukya J, Mahajan V.Optimization of controllers parameters for damping local area oscillation to enhance the stability of an interconnected system with wind farm[J]. International Journal of Electrical Power and Energy Systems, 2020, 119: 1-23. [13] Pang Bo, Nian Heng.Collaborative control and allocation method of RSC and GSC for DFIG system to suppress high-frequency resonance and harmonics[J]. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10509-10519. [14] Li Shenghu, Zhang Hao, Yan Yunsong, et al.Parameter optimization to power oscillation damper(POD) considering its impact on the DFIG[J]. IEEE Transactions on Power Systems, DOI: 10.1109/ TPWRS.2021.3104816. [15] Chen Aikang, Xie Da, Zhang Daming, et al.PI parameter tuning of converters for sub-synchronous interactions existing in grid-connected DFIG wind turbines[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6345-6355. [16] 秦超, 曾沅, 苏寅生, 等. 基于安全域的大规模风电并网系统低频振荡稳定分析[J]. 电力自动化设备, 2017, 37(5): 100-106. Qin Chao, Zeng Yuan,su Yinsheng, et al. Low- frequency oscillatory stability analysis based on security region for power system with large-scale wind power[J]. Electric Power Automation Equipment, 2017, 37(5): 100-106. [17] Bhukya J, Mahajan V.Optimization of damping controller for PSS and SSSC to improve stability of interconnected system with DFIG based wind farm[J]. International Journal of Electrical Power and Energy Systems, 2019, 108: 314-335. [18] Tian Xinshou, Chi Yongning, Li Yan, et al.Coordinated damping optimization control of sub-synchronous oscillation for DFIG and SVG[J]. CSEE Journal of Power and Energy Systems, 2021, 7(1): 140-149. [19] Prakash T, Singh V P, Mohantys R.A synchrophasor measurement based wide-area power system stabilizer design for inter-area oscillation damping considering variable time-delays[J]. International Journal of Electrical Power and Energy Systems, 2019, 105: 131-141. [20] 王一珺, 杜文娟, 陈晨, 等. 基于改进复转矩系数法的风电场并网引发电力系统次同步振荡研究[J]. 电工技术学报, 2020, 35(15): 3258-3269. Wang Yijun, Du Wenjuan, Chen Chen, et al.Study on sub-synchronous oscillations of power systems caused by grid-connected wind farms based on the improved complex torque coefficients method[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3258-3269. [21] 王一珺, 杜文娟, 王海风. 基于改进复转矩系数法的多风电场接入引发多机电力系统次同步振荡机理分析[J]. 中国电机工程学报, 2021, 41(7): 2383-2394. Wang Yijun, Du Wenjuan, Wang Haifeng.Analysis of subsynchronous oscillation in multi-machine power system caused by the integration of multiple wind farms based on improved complex torque coefficient method[J]. Proceedings of the CSEE, 2021, 41(7): 2383-2394. [22] Yao Jun, Wang Xuewei, Li Jiawei, et al.Sub-synchronous resonance damping control for series-compensated DFIG-based wind farm with improved particle swarm optimization algorithm[J]. IEEE Transactions on Energy Conversion, 2019, 34(2): 849-859. [23] 李佩杰, 黄淑晨, 李滨, 等. 基于梯度采样序列二次规划方法的PSS参数协调优化[J]. 中国电机工程学报, 2021, 41(8): 2734-2743. Li Peijie, Huang Shuchen, Li Bin, et al.Simultaneous coordination and optimization for the parameters of PSS based on sequential quadratic programming with gradient sampling[J]. Proceedings of the CSEE, 2021, 41(8): 2734-2743. [24] 李生虎, 张浩. 风电系统振荡模式对DFIG-PSS传递函数的灵敏度分析[J]. 电力系统保护与控制, 2020, 48(16): 11-17. Lishenghu, Zhang Hao.Sensitivity analysis of the oscillation modes to the transfer function of DFIG- PSS in a wind power system[J]. Power System Protection and Control, 2020, 48(16): 11-17. [25] 张国洲, 易建波, 滕予非, 等. 多运行方式下多机 PSS 的协调优化方法[J]. 电网技术, 2018, 42(9): 2797-2805. Zhang Guozhou, Yi Jianbo, Teng Yufei, et al.Coordinated optimization of multi-machine power system stabilizers under multiple operating conditions[J]. Power System Technology, 2018, 42(9): 2797-2805. [26] Yuan Heling, Xu Yan.Preventive-corrective coordinated transient stability dispatch of power systems with uncertain wind power[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3616-3626. [27] Wieler P L C, Kuiava R, Souza W. Transient stability constrained optimal power flow based on trajectory sensitivity for power dispatch of distributed synchronous generators[J]. IEEE Latin America Transactions, 2020, 18(7): 1247-1254. [28] Wang Tong, Gao Mingyang, Mi Dengkai, et al.Dynamic equivalent method of PMSG-based wind farm for power system stability analysis[J]. IET Generation, Transmission & Distribution, 2020, 14(17): 3488-3497. [29] 张剑, 何怡刚. 基于轨迹灵敏度分析的永磁直驱风电场等值模型参数辨识[J]. 电工技术学报, 2020, 35(15): 3304-3313. Zhang Jian, He Yigang.Parameters identification of equivalent model of permanent magnet synchronous generator wind farm based on analysis of trajectory sensitivity[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3304-3313. [30] 刘征帆, 安军, 蒋振国, 等. 基于轨迹灵敏度频域特征提取的电力系统仿真误差主导参数识别[J]. 电力自动化设备, 2021, 41(3): 144-150. Liu Zhengfan, An Jun, Jiang Zhenguo, et al.Dominant parameter identification of power system simulation error based on frequency domain characteristic extraction of trajectory sensitivity[J]. Electric Power Automation Equipment, 2021, 41(3): 144-150. [31] 邹建林, 安军, 穆钢, 等. 基于轨迹灵敏度的电力系统暂态稳定性定量评估[J]. 电网技术, 2013, 38(3): 694-699. Zou Jianlin, An Jun, Mu Gang, et al.Quantitative assessment of the transient stability of power system based on trajectory sensitivity[J]. Power System Technology, 2013, 38(3): 694-699. [32] 王长江, 姜涛, 刘福锁, 等. 基于轨迹灵敏度的暂态过电压两阶段优化控制[J]. 电工技术学报, 2021, 36(9): 1888-1913. Wang Changjiang, Jiang Tao, Liu Fusuo, et al.Two-stage optimization control of transient overvoltage based on trajectory sensitivity[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1888-1913. [33] 李生虎, 李卓鹏, 张浩, 等. 基于风电并网电力系统拓展轨迹灵敏度的DFIG控制参数优化[J]. 太阳能学报, 2021, 42(6): 369-376. Li Shenghu, Li Zhuopeng, Zhang Hao, et al.Control parameter optimization to DFIG-integrated power system based on extended trajectory sensitivity[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 369-376. [34] Karunanayake C, Ravishankar J, Dong Zhaoyang.Nonlinears SR damping controller for DFIG based wind generators interfaced to series compensated transmission systems[J]. IEEE Transactions on Power Systems, 2020, 35(2): 1156-1165. [35] Edrah M, Zhao Xiaowei, Hung W, et al.Effects of POD control on a DFIG wind turbine structural system[J]. IEEE Transactions on Energy Conversion, 2020, 35(2): 765-774. [36] 陈良双, 吴思奇, 喻文倩, 等. 基于转子侧附加阻尼控制的双馈风机并网次/超同步振荡抑制方法[J]. 电力系统保护与控制, 2021, 49(15): 47-58. Chen Liangshuang, Wu Siqi, Yu Wenqian, et al.A sub/super-synchronous oscillation suppression method for a DFIG-connected grid based on additional damping control on the roto rside converter[J]. Power System Protection and Control, 2021, 49(15): 47-58. [37] 戚军, 吴仟, 陈康, 等. 考虑时变时滞影响的大型双馈风力发电系统附加阻尼控制[J]. 电网技术, 2019, 43(12): 4440-4450. Qi Jun, Wu Qian, Chen Kang, et al.Additional damping control of largescale DFIG-based wind power generation system considering time-varying delays[J]. Power System Technology, 2019, 43(12): 4440-4450. [38] Gurung N, Bhattarai R, Kamalasadan S.Optimal oscillation damping controller design for large-scale wind integrated power grid[J]. IEEE Transactions on Industry Applications, 2020, 56(4): 4225-4235. [39] 姚骏, 孙鹏, 刘瑞阔, 等. 弱电网不对称故障期间双馈风电系统动态稳定性分析[J]. 中国电机工程学报, 2021, 41(21): 7225-7236. Yao Jun, Sun Peng, Liu Ruikuo, et al.Dynamic stability analysis of DFIG-based wind power system during asymmetric faults of weak grid[J]. Proceedings of the CSEE, 2021, 41(21): 7225-7236. [40] 章艳, 张萌, 高晗. 基于阻耗系数的双馈风机系统阻尼控制研究[J]. 电网技术, 2021, 45(7): 2781-2790. Zhang Yan, Zhang Meng, Gao Han.Damping control for grid connected DFIG system based on dissipated energy coefficient[J]. Power System Technology, 2021, 45(7): 2781-2790.