Two-Stage Optimization Control of Transient Overvoltage Based on Trajectory Sensitivity
Wang Changjiang1, Jiang Tao1, Liu Fusuo2, Chen Houhe1, Lu Huawei1
1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Ministry of Education Northeast Electric Power University Jilin 132012 China; 2. State Key Laboratory of Smart Grid Protection and Control Nanrui Group Corporation Nanjing 211106 China
Abstract:In order to mitigate the transient overvoltage of high voltage direct currents (HVDC) sending-side system when wind power is transmitted via HVDC, a two-stage optimization control strategy for transient overvoltage based on trajectory sensitivity is proposed in this paper. At first, an optimization control model of transient overvoltage is constructed, whose objective is to minimize the control cost and the deviation between bus voltage predictive trajectories and their reference values comprehensively. The trajectory sensitivities of transient overvoltage and the recovery voltage with respect to control variables are computed by means of employing trajectory sensitivity technique, and hence this receding nonlinear control model of transient overvoltage is simplified into a quadratic programming model whose independent variables are increments of control variables, which enhances the control efficiency of transient overvoltage. Then, in order to solve the transient overvoltage instability problem, the control quantity change of the transient overvoltage prevention control is calculated before the fault, and a transient overvoltage prevention control is implemented to avoid serious transient overvoltage hazards. If the recovery voltage exceeds the limit, the recovery voltage control is further implemented. The control quantity change of the recovery voltage control is calculated, and the recovery voltage is adjusted to a safe operating range. The proposed control method can both suppress transient overvoltage and ensure the safety of recovery voltage, which provides a reference for a dispatcher to perform transient overvoltage control. Finally, the simulation results on the modified IEEE-39 bus system demonstrate the effectiveness of the proposed control method.
王长江, 姜涛, 刘福锁, 陈厚合, 鲁华威. 基于轨迹灵敏度的暂态过电压两阶段优化控制[J]. 电工技术学报, 2021, 36(9): 1888-1900.
Wang Changjiang, Jiang Tao, Liu Fusuo, Chen Houhe, Lu Huawei. Two-Stage Optimization Control of Transient Overvoltage Based on Trajectory Sensitivity. Transactions of China Electrotechnical Society, 2021, 36(9): 1888-1900.
[1] 骆悦, 姚骏, 张田, 等. 大规模风电直流外送系统单极闭锁场景下送端系统协调控制策略[J]. 电工技术学报, 2019, 34(19): 4108-4118. Luo Yue, Yao Jun, Zhang Tian, et al.Coordinated control strategy of large-scale wind power generation sending system under mono-polar block fault[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4108-4118. [2] 蔡游明, 李征, 蔡旭. 计及控制时间窗内功率波动的风电场群无功电压分层优化控制[J]. 电工技术学报, 2019, 34(6): 1240-1250. Cai Youming, Li Zheng, Cai Xu.Voltage hierarchical optimal control of a wind farm cluster in account of voltage fluctuation in control time window[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1240-1250. [3] 李辉, 谢翔杰, 刘行中, 等. 风电变桨电机参数对控制系统影响分析及改进辨识方法[J]. 电机与控制学报, 2019, 23(7): 9-18. Li Hui, Xie Xiangjie, Liu Xingzhong, et al.Influence of parameters on control system and improved identification method of pitch motor in wind turbine generator system[J]. Electric Machines and Control, 2019, 23(7): 9-18. [4] 张炎, 丁明, 韩平平, 鲍玉莹, 孙浩然. 直流闭锁后风电送端系统暂态稳定及控制策略研究[J]. 电工技术学报, 2020, 35(17): 3714-3726. Zhang Yan, Ding Ming, Han Pingping, Bao Yuying, Sun Haoran.Study on the transient stability and control schemes of the sending-end system involving wind power after UHVDC block[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3714-3726. [5] 李国庆, 刘先超, 张嵩, 等. 基于MMC的两端TWBS-HVDC直流侧短路故障电流计算方法[J]. 电力系统自动化, 2020, 44(5): 91-100. Li Guoqing,Liu Xianchao,Zhang Song, et al.Current calculation method of short-circuit fault at DC side for MMC based two-terminal TWBS-HVDC[J]. Automation of Electric Power Systems, 2020, 44(5):91-100. [6] 索之闻, 陈启超, 李晖, 等. 混合直流输电系统送端交流暂态电压特性研究[J]. 电力系统保护与控制, 2019, 47(17): 125-132. Suo Zhiwen, Chen Qichao, Li Hui, et al.Research on sending end AC transient voltage characteristics of hybrid HVDC transmission system[J]. Power System Protection and Control, 2019, 47(17): 125-132. [7] Gao Chao, Liu Hui, Jiang Hao, et al.Research on the sub-synchronous oscillation in wind power connected to series compensated power system and its influencing factors[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(3): 334-340. [8] 王燕宁, 郭春义, 郑安然, 等. 极弱受端交流系统下LCC-MMC型混合直流输电系统的附加频率-电压阻尼控制[J]. 电工技术学报, 2020, 35(7): 1509-1520. Wang Yanning, Guo Chunyi, Zheng Anran, et al.Supplementary frequency-voltage damping control for LCC-MMC hybrid HVDC system connected to extremely weak receiving AC grid[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1509-1520. [9] 赵学明, 李永丽, 孙广宇, 等. 换相失败对含风电场的交直流混联系统送端过电压的影响[J]. 高电压技术, 2019, 45(11): 3666-3673. Zhao Xueming, Li Yongli, Sun Guangyu, et al.Effect of commutation failure on the overvoltage on rectifier station in AC/DC hybrid power system with wind farms[J]. High Voltage Engineering, 2019, 45(11): 3666-3673. [10] 颜湘武, 邓浩然, 郭琪, 等. 基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J]. 电工技术学报, 2019, 34(18): 3937-3948. Yan Xiangwu, Deng Haoran, Guo Qi, et al.Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3937-3948. [11] 冀肖彤. 抑制HVDC送端交流暂态过电压的控制系统优化[J]. 电网技术, 2017, 41(3): 721-728. Ji Xiaotong.Optimization of HVDC control system for mitigating AC transient overvoltage on rectifier station[J]. Power System Technology, 2017, 41(3): 721-728. [12] 屠竞哲, 张健, 刘明松, 等. 风火打捆直流外送系统直流故障引发风机脱网的问题研究[J]. 电网技术, 2015, 39(12): 3333-3338. Tu Jingzhe, Zhang Jian, Liu Mingsong, et al.Study on wind turbine generators tripping caused by HVDC contingencies of wind-thermal-bundled HVDC transmission systems[J]. Power System Technology, 2015, 39(12): 3333-3338. [13] 许建兵, 江全元, 石庆均. 基于储能型DVR的双馈风电机组电压穿越协调控制[J]. 电力系统自动化, 2013, 37(4): 14-20. Xu Jianbing, Jiang Quanyuan, Shi Qingjun.Voltage crossing coordination control of doubly-fed wind turbine based on energy storage DVR[J]. Automation of Electric Power Systems, 2013, 37(4): 14-20. [14] 金一丁, 于钊, 李明节, 等. 新一代调相机与电力电子无功补偿装置在特高压交直流电网中应用的比较[J]. 电网技术, 2018, 42(7): 2095-2102. Jin Yiding, Yu Zhao, Li Mingjie, et al.Comparison of new generation synchronous condenser and power electronic reactive-power compensation devices in application in UHV DC/AC grid[J]. Power System Technology, 2018, 42(7): 2095-2102. [15] 屠竞哲, 张健, 曾兵, 等. 直流换相失败及恢复过程暂态无功特性及控制参数影响[J]. 高电压技术, 2017, 43(7): 2131-2139. Tu Jingzhe, Zhang Jian, Zeng Bing, et al.HVDC transient reactive power characteristics and impact of control system parameters during commutation failure and recovery[J]. High Voltage Engineering, 2017, 43(7): 2131-2139. [16] 张爱玲, 李少华, 张崇见, 等. “风火打捆”孤岛特高压直流送端电压和频率控制[J]. 电力系统及其自动化学报, 2015, 27(3): 29-35. Zhang Ailing, Li Shaohua, Zhang Chongjian, et al.Voltage and frequency control of wind-thermal-bundled island transmission by UHVDC system[J]. Proceedings of the CSU-EPSA, 2015, 27(3): 29-35. [17] 罗煦之, 张健, 贺静波, 等. 计及暂态过电压约束的直流闭锁安控与极控协调控制研究[J]. 电网技术, 2015, 39(9): 2526-2531. Luo Xuzhi, Zhang Jian, He Jingbo, et al.Coordinated control research of stability control system and pole control system under DC system block considering transient overvoltage[J]. Power System Technology, 2015, 39(9): 2526-2531. [18] 贺静波, 庄伟, 许涛, 等. 暂态过电压引起风电机组连锁脱网风险分析及对策[J]. 电网技术, 2016, 40(6): 1839-1844. He Jingbo, Zhuang Wei, Xu Tao, et al.Study on cascading tripping risk of wind turbines caused by transient overvoltage and its countermeasures[J]. Power System Technology, 2016, 40(6): 1839-1844. [19] 谢震, 张兴, 杨淑英, 等. 基于虚拟阻抗的双馈风力发电机高电压穿越控制策略[J]. 中国电机工程学报, 2012, 32(27): 16-23. Xie Zhen, Zhang Xing, Yang Shuying, et al.High voltage ride-through control strategy of double fed induction wind generators based on virtual impedance[J]. Proceedings of the CSEE, 2012, 32(27): 16-23. [20] 赵峰, 吴涛, 谢欢, 等. 发电机励磁辅助控制功能对特高压直流送端动态无功支撑能力的影响研究[J]. 电网技术, 2018, 42(7): 2262-2272. Zhao Feng, Wu Tao, Xie Huan, et al.Study on effect of generator excitation auxiliary control on dynamic reactive power support capability of UHVDC transmission sending system[J]. Power System Technology, 2018, 42(7): 2262-2272 [21] 刘进. 基于风险的电网预防控制与紧急控制协调优化研究[D]. 北京: 华北电力大学, 2019. [22] 兰强, 方勇杰, 鲍颜红, 等. 基于EEAC的考虑暂态安全稳定约束的最优潮流计算[J]. 电力系统自动化, 2010, 34(8): 34-38, 115. Lan Qiang, Fang Yongjie, Bao Yanhong, et al.Transient security constrained optimal power flow based on EEAC method[J]. Automation of Electric Power Systems, 2010, 34(8): 34-38, 115. [23] 卢锦玲, 何振民, 何同祥, 等. 计及暂态电压安全性的风电场无功电压协调控制[J]. 电网技术, 2015, 39(10): 2780-2786. Lu Jinling, He Zhenmin, He Tongxiang, et al.Reactive power and voltage coordinated control strategy of wind farm considering transient voltage security[J]. Power System Technology, 2015, 39(10): 2780-2786. [24] 王旭冉, 郭庆来, 孙宏斌, 等. 考虑快速动态无功补偿的二级电压控制[J]. 电力系统自动化, 2015, 39(2): 53-60. Wang Xuran, Guo Qinglai, Sun Hongbin, et al.Secondary voltage control considering rapid dynamic reactive power compensation[J]. Automation of Electric Power Systems, 2015, 39(2): 53-60. [25] 林舜江, 刘明波. 暂态电压安全预防控制优化的轨迹灵敏度法[J]. 电力系统自动化, 2010, 34(4): 12-17. Lin Shunjiang, Liu Mingbo.Using trajectory sensitivity method for transient voltage security preventive control optimization[J]. Automation of Electric Power Systems, 2010, 34(4): 12-17. [26] 林舜江, 刘明波, 周欣, 等. 暂态电压安全紧急切负荷控制优化研究[J]. 电力系统保护与控制, 2010, 38(11): 18-24. Lin Shunjiang, Liu Mingbo, Zhou Xin, et al.Emergency load shedding control optimization for transient voltage security[J]. Power System Protection and Control, 2010, 38(11): 18-24. [27] 曾雪洋, 刘天琪, 王顺亮, 等. 换相失败下柔性直流与传统直流互联输电系统的暂态无功协调控制策略[J]. 电力自动化设备, 2019, 39(12): 28-35. Zeng Xueyang, Liu Tianqi, Wang Shunliang, et al.Coordinated transient reactive power control strategy for transmission system connected by VSC-HVDC and LCC-HVDC under commutation failure[J]. Electric Power Automation Equipment, 2019, 39(12): 28-35. [28] 韩平平, 张海天, 丁明, 等. 大规模高压直流输电系统闭锁故障下送端风电场高电压穿越的控制策略[J]. 电网技术, 2018, 42(4): 1086-1095. Han Pingping, Zhang Haitian, Ding Ming, et al.A coordinated HVRT strategy of large-scale wind power transmitted with HVDC system[J]. Power System Technology, 2018, 42(4): 1086-1095. [29] 谢季平, 张文, 杨浩. 考虑直流调制的交直流系统中长期电压稳定协调控制[J]. 电力系统自动化, 2019, 43(22): 76-85. Xie Jiping, Zhang Wen, Yang Hao.Coordinated control for middle-long-term voltage stability of AC/DC power system considering DC modulation[J]. Automation of Electric Power Systems, 2019, 43(22): 76-85. [30] 武健, 刘子栋, 王超, 等. 基于灵敏度理论的逆变器并网系统谐振特性分析[J]. 电机与控制学报, 2018, 22(12): 11-21, 29. Wu Jian, Liu Zidong, Wang Chao, et al.Harmonic resonance characteristics of grid-connected system based on sensitivity theory[J]. Electric Machines and Control, 2018, 22(12): 11-21, 29. [31] 吴萍, 陈昊, 赵兵, 等. 风光火打捆交直流混联外送系统交互影响及稳定性研究[J]. 电网技术, 2016, 40(7): 1934-1942. Wu Ping, Chen Hao, Zhao Bing, et al.Study on interaction and stability characteristics of bundled wind-PV-thermal power transmitted with AC/DC system[J]. Power System Technology, 2016, 40(7): 1934-1942. [32] 吴熙, 关雅静, 宁威, 等. 双馈风机转子侧变换器参数对次同步振荡的交互影响机理及其应用研究[J]. 电网技术, 2018, 42(8): 2536-2544. Wu Xi, Guan Yajing, Ning Wei, et al.Mechanism of interactive effect of RSC parameters in DFIG on SSO and its application[J]. Power System Technology, 2018, 42(8): 2536-2544. [33] 王渝红. 交直流混合运行系统中的换相失败研究[D]. 成都: 西南交通大学, 2008. [34] 黄义隆, 谢敏, 刘明波. 基于修正轨迹灵敏度的模型预测长期电压稳定控制[J]. 电力系统自动化, 2012, 36(3): 28-33. Huang Yilong, Xie Min, Liu Mingbo.Model predictive control for long-term voltage stability based on corrected trajectory sensitivities[J]. Automation of Electric Power Systems, 2012, 36(3): 28-33. [35] 张岩. 基于滚动时域优化的长期电压稳定分析与控制研究[D]. 济南: 山东大学, 2014.