Preventive Control Method of Vessel DC Zonal Electric Distribution System during Motor Start-up
Xiao Han1, Ye Zhihao1, Ji Feng1, Chen Qilei1,2, Yan Qingsong1
1. National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China; 2. Marine Design and Research Institute Shanghai 200011 China
Abstract:According to the new characteristics of DC zonal electric distribution in the vessel integrated power system (IPS) and aiming at the problem of overload of the inverter due to motor start-up, a primary load transfer model and a secondary load transfer model were respectively established with a safe motor start-up as the prerequisite and the minimum switching loss as the goal. Then, the amount of load in the DC zonal electric distribution system (DC-ZEDS) under different operating conditions was compared with the safe boundary given by the total supply capability (TSC) model for load transfer. On this basis, a heavy-load inquiry process was offered according to different load priorities. Finally, for the load distribution under different working conditions, corresponding preventive control strategies were proposed, which can deal with the inverter overload due to motor start-up and avoid load-shedding operation to the uttermost.
肖晗, 叶志浩, 纪锋, 陈起磊, 颜清松. 考虑电动机起动的舰船直流区域配电系统预防控制方法[J]. 电工技术学报, 2018, 33(2): 413-422.
Xiao Han, Ye Zhihao, Ji Feng, Chen Qilei, Yan Qingsong. Preventive Control Method of Vessel DC Zonal Electric Distribution System during Motor Start-up. Transactions of China Electrotechnical Society, 2018, 33(2): 413-422.
[1] 马伟明. 舰船动力发展的方向——综合电力系统[J]. 海军工程大学学报, 2002, 14(6): 1-11. Ma Weiming. Integrated power systems-trend of ship power development[J]. Journal of Naval University of Engineering, 2002, 14(6): 1-11. [2] Mashayekh S. An integrated security-constrained model-based dynamic power management approach for isolated microgrid power systems[D]. Texas: Texas A&M University Electrical Engineering, 2013. [3] 孙宏斌, 郭庆来, 吴文传, 等. 风电场分布式能量管理系统:体系架构和关键技术[J]. 电力系统保护与控制, 2014, 42(5): 26-31. Sun Hongbin, Guo Qinglai, Wu Wenchuan, et al. Wind farm distributed energy management system: architecture and key technologies[J]. Power System Protection and Control, 2014, 42(5): 26-31. [4] 费阳, 沈润, 戴桂木. 微电网能量管理系统站控层设计[J]. 电气技术, 2015(1): 6-10. Fei Yang, Shen Run, Dai Guimu. The design of station control layer in micro-grid energy manager system[J]. Electrical Engineering, 2015(1): 6-10. [5] 贾宁, 王彬, 孙宏斌, 等. 基于全景精细化模型的风电场能量管理系统研制及应用[J]. 电力系统保护与控制, 2016, 44(14): 61-68. Jia Ning, Wang Bin, Sun Hongbin, et al. Deve- lopment and application of panoramic fine modeling based wind farm energy management system[J]. Power System Protection and Control, 2016, 44(14): 61-68. [6] 胡勇. 主动配电网用户侧能量管理系统设计与实现[J]. 电力系统保护与控制, 2016, 44(16): 149-155. Hu Yong. Design and implementation of user energy management system on active distribution network[J]. Power System Protection and Control, 2016, 44(16): 149-155. [7] 郭思琪, 袁越, 张新松, 等. 多时间尺度协调控制的独立微网能量管理策略[J]. 电工技术学报, 2014, 29(2):122-129. Guo Siqi, Yuan Yue, Zhang Xinsong, et al. Energy management strategy of isolated microgrid based on multi-time scale coordinated control[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 122- 129. [8] 郭力, 王蔚, 刘文建, 等. 风柴储海水淡化独立微电网系统能量管理方法[J]. 电工技术学报, 2014, 29(2): 113-121. Guo Li, Wang Wei, Liu Wenjian, et al. The energy management method for stand-alone wind/diesel/ battery/sea-water desalination microgrid[J]. Transa- ctions of China Electrotechnical Society, 2014, 29(2): 113-121. [9] 杨俊友, 王海鑫, 邢作霞, 等. 孤岛模式下潮流能发电系统协调控制策略[J]. 电工技术学报, 2015, 30(14): 551-560. Yang Junyou, Wang Haixin, Xing Zuoxia, et al. Coordination control strategy of tidal power gener- ation in island grid[J]. Transactions of China Elec- trotechnical Society, 2015, 30(14): 551-560. [10] 贾星蓓, 窦春霞, 岳东, 等. 基于多代理系统的微电网多尺度能量管理[J]. 电工技术学报, 2016, 31(17): 63-73. Jia Xingbei, Dou Chunxia, Yue Dong, et al. Multiple- time-scales optimal energy management in microgrid system based on multi-agent-system[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 63-73. [11] Jayabalan R, Fahimi B. Fault diagnostics in naval shipboard power system for contingency management and survivability[C]//Electric Ship Technologies Symposium, Philadelphia, PA, 2005: 108-111. [12] Wu Wei, Wang Daifeng, Arapostathis Ari, et al. Optimal power generation scheduling of a shipboard power system[C]//Electric Ship Technologies Symposium, Washington DC, 2007: 519-522. [13] Arcidiacono V, Monti A, Sulligoi G. An innovative generation control system for improving design and stability of shipboard medium-voltage DC integrated power system[C]//Electric Ship Technologies Sympo- sium, Baltimore, 2009: 152-156. [14] Mitra P, Venayagamoorthy G K. An adaptive control strategy for DSTATCOM applications in an electric ship power system[J]. IEEE Transactions on Power Electronics, 2010, 25(1): 95-104. [15] Feng X, Zourntos T, Butler-Purry K L, et al. Dynamic load management for NG IPS ships[C]//IEEE Power & Energy Society General Meeting, Minneapolis, 2010: 1-8. [16] Feng X, Butler-Purry K L, Zourntos T. Analysis of various partitioning strategies for multi-agent system- based real-time load management for NG IPS ships[C]//Electric Ship Technologies Symposium, Alexandria, VA, 2011: 173-180. [17] Feng X, Butler-Purry K L, Zourntos T, et al. Multi- agent system-based real-time load management for NG IPS ships in high/medium voltage level[C]// Power Systems Conference and Exposition, Phoenix, AZ, 2011: 1-8. [18] Feng X, Butler-Purry K L, Zourntos T. Multi-agent system-based real-time load management for all- electric ship power systems in DC zone level[J]. IEEE Transactions on Power Systems, 2012, 27(4): 1719-1728. [19] Feng X, Butler-Purry K L, Zourntos T. A multi-agent system framework for real-time electric load manage- ment in MVAC all-electric ship power systems[J]. IEEE Transactions on Power Systems, 2015, 30(3): 1327-1336. [20] Doerry N H, Fireman H. Designing all electric ships[C]//Proceeding of the Ninth International Marine Design Conference, Michigan, 2006: 475- 497. [21] Ma Weiming. Development of vessel integrated power system[C]//The 14th International Conference on Electrical Machines and Systems, Beijing, 2011: 1-12. [22] 李白, 叶志浩, 纪锋, 等. 基于Hypersim的舰船直流区域配电网络的实时仿真模型[J]. 舰船科学技术, 2013, 35(11): 55-59, 63. Li Bai, Ye Zhihao, Ji Feng, et al. Real-time simulation model research for a vessel's DC-ZEDS based on the hypersim[J]. Ship Science and Tech- nology, 2013, 35(11): 55-59, 63. [23] 肖晗, 叶志浩, 马凡, 等. 舰船直流区域配电系统安全运行边界计算与分析[J]. 电工技术学报, 2016, 31(20): 202-208. Xiao Han, Ye Zhihao, Ma Fan, et al. Calculation and analysis of the safe operation boundary of shipboard DC zonal electric distribution system[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 202- 208. [24] 肖晗, 叶志浩, 纪锋. 考虑电动机启动的舰船直流区域配电系统最大供电能力计算与分析[J]. 中国电机工程学报, 2017, 37(18): 5228-5237. Xiao Han, Ye Zhihao, Ji Feng. Analysis and calculation of total supply capability of vessel DC zonal electric distribution system during motor start-up[J]. Proceedings of the CSEE, 2017, 37(18): 5228-5237. [25] 兰海, 卢芳, 孟杰. 舰船电力系统[M]. 北京: 国防工业出版社, 2012. [26] 王家林, 夏立, 吴正国, 等. 基于快速非支配排序遗传算法的船舶电力系统多目标故障重构[J]. 电网技术, 2012, 36(11): 58-64. Wang Jialin, Xia Li, Wu Zhengguo, et al. Multiobjective optimal network reconfiguration of shipboard power system based on non-dominated sorting genetic algorithm-Ⅱ[J]. Power System Tech- nology, 2012, 36(11): 58-64.