Abstract:In order to promote the economic use of electricity and the consumption of distributed generation, the energy storage device is crucial in the scheduling of active distribution network (ADN). However, it will greatly increase the cost of the system. The time-of-use (TOU) tariff can effectively promote the flexible load contribution for energy balance regulation, thereby reducing the cost of energy storage. Based on the theory of price elasticity of electric demand, resident historical data is used to divide different periods of TOU tariff. Under the demand response (DR) mechanism, a flexible load scheduling model based on control method is established in ADN. For reducing the power fluctuation of the network side as well as enhancing the degree of comfort and operation economy, a multi-objective optimization model is constructed. Then this model is solved by particle swarm optimization algorithm to obtain the control method of flexible load. Through the analysis and simulation of a specific scene, the effectiveness of the approach is demonstrated, which achieves friendly and efficient use of clean energy access in distribution network.
[1] Consortium for Electric Reliability Technology Solutions. White paper on integration of distributed energy resourse[R]. Berkeley, California: Consortium for Electric Reliability Technology Solutions (CERTS), 2002. [2] Lin J, Sun Y Z, Cheng L, et al. Assesment of the power reduction of wind farms under extreme wind condition by a high resolution simulation model[J]. Applied Energy, 2012, 96(8): 21-32. [3] Parsa M, Abdollahi A, Rashidinejad M. Flexible demand response programs modeling in competitive electricity markets[J]. Applied Energy, 2011, 88(9): 3257-3269. [4] 王成山, 刘梦旋, 陆宁. 采用居民温控负荷控制的微网联络线功率波动平滑方法[J]. 中国电机工程学报, 2012, 32(25): 36-43. Wang Chengshan, Liu Mengxuan, Lu Ning. A tie- line power smoothing method for microgrid using residential thermostatically-controlled loads[J]. Pro- ceedings of the CSEE, 2012, 32(25): 36-43. [5] 符杨, 蒋一鎏, 李振坤, 等. 计及可平移负荷的微网经济优化调度[J]. 中国电机工程学报, 2014, 34(16): 2612-2620. Fu Yang, Jiang Yiliu, Li Zhenkun, et al. Optimal economic dispatch for microgrid considering shiftable loads[J]. Proceedings of the CSEE, 2014, 34(16): 2612-2620. [6] 陈丽丹, 聂涌泉, 钟庆. 基于出行链的电动汽车充电负荷预测模型[J]. 电工技术学报, 2015, 30(4): 216-225. Chen Lidan, Nie Yongquan, Zhong Qing. A model for electric vehicle charging load forecasting based on tripchain[J]. Transactions of China Electro- technical Society, 2015, 30(4): 216-225. [7] 江岳春, 王志刚, 杨春月. 微网中可控负荷的多目标优化策略[J]. 电网技术, 2013, 37(10): 2875-2880. Jiang Yuechun, Wang Zhigang, Yang Chunyue. Multi-objective optimization strategy of controllable load in microgrid[J]. Power System Technology, 2013, 37(10): 2875-2880. [8] 曾君, 徐冬冬, 刘俊峰, 等. 考虑负荷满意度的微电网运行多目标优化方法研究[J]. 中国电机工程学报, 2016, 36(12): 3325-3333. Zeng Jun, Xu Dongdong, Liu Junfeng, et al. Multi- objective optimal operation of microgrid considering dynamic loads[J]. Proceedings of the CSEE, 2016, 36(12): 3325-3333. [9] 杨胜春, 丁洪发. 多时间尺度协调的柔性负荷互动响应调度模型与策略[J]. 中国电机工程学报, 2014, 34(22): 3666-3673. Yang Shengchun, Ding Hongfa. Model and strategy for multi-time scale coordinated flexible load interactive scheduling[J]. Proceedings of the CSEE, 2014, 34(22): 3666-3673. [10] 樊伟, 刘念, 张建华. 事件驱动的智能家庭在线能量管理算法[J]. 电工技术学报, 2016, 31(13): 130-140. Fan Wei, Liu Nian, Zhang Jianhua. An online algorithm based on event triggering for energy management of smart home[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 130-140. [11] 卫文婷, 王丹, 贾宏杰, 等. 一种基于模型预测的城市园区分层分布式温控负荷需求响应控制策略[J]. 中国电机工程学报, 2016, 36(8): 2049-2056. Wei Wenting, Wang Dan, Jia Hongjie, et al. A hierarchical and distributed control strategy of thermostatically controlled appliances for city park based on load model prediction[J]. Proceedings of the CSEE, 2016, 36(8): 2049-2056. [12] 张延宇, 曾鹏, 臧传治. 智能电网环境下家庭能源管理系统研究综述[J]. 电力系统保护与控制, 2014, 42(18): 144-154. Zhang Yanyu, Zeng Peng, Zhang Chuanzhi. Review of home energy manage system in smart grid[J]. Power System Protection and Control, 2014, 42(18): 144-154. [13] 刘文学, 梁军, 贠志皓, 等. 考虑节能减排的多目标模糊机会约束动态经济调度[J]. 电工技术学报, 2016, 31(1): 63-70. Liu Wenxue, Liang Jun, Yun Zhihao, et al. Multi- objective fuzzy chance constrained dynamic economic dispatch considering energy saving and emission reduction[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 63-70. [14] 汤奕, 鲁针针, 宁佳. 基于电力需求响应的智能家电管理控制方案[J]. 电力系统自动化, 2014, 38(9): 93-99. Tang Yi, Lu Zhenzhen, Ning Jia. Management and control scheme for intelligent home appliances based on electricity demand response[J]. Automation of Electric Power Systems, 2014, 38(9): 93-99. [15] 张志丹, 黄小庆, 曹一家, 等. 电网友好型空调负荷的主动响应策略研究[J]. 中国电机工程学报, 2014, 34(25): 4207-4218. Zhang Zhidan, Huang Xiaoqing, Cao Yijia, et al. Research on active response policy for grid friendly air conditioning load[J]. Proceedings of the CSEE, 2014, 34(25): 4207-4218. [16] 周磊, 李扬, 高赐威. 聚合空调负荷的温度调节方法改进及控制策略[J]. 中国电机工程学报, 2014, 34(31): 5579-5589. Zhou Lei, Li Yang, Gao Ciwei. Improvement of temperature adjusting method for aggregated air- conditioning loads and its control strategy[J]. Proceedings of the CSEE, 2014, 34(31): 5579-5589. [17] Lu N. An evaluation of the HVAC load potential for providing load balancing service[J]. Accepted: IEEE Transaction on Smart Grid, 2012, doi:10.1109/ TSG.2012. 2183649. [18] 罗伶. 基于模糊c均值聚类的分类分时电价研究[D]. 济南: 山东大学, 2013. [19] 李春燕, 许中, 马智远. 计及用户需求响应的分时电价优化模型[J]. 电力系统及其自动化学报, 2015, 27(3): 11-16. Li Chunyan, Xu Zhong, Ma Zhiyuan. Optimal time- of-use electricity price model considering customer demand response[J]. Proceedings of the CSU-EPSA, 2015, 27(3): 11-16.