Abstract:With the rapid development of nuclear power technology, it is an inevitable trend for large capacity nuclear power units to be connected to the power grid to achieve low carbon and environmental protection. However, with the increase of load peak-valley difference and the increase of intermittent power supply permeability, it is urgent for nuclear power units to share the peak pressure of the power grid in a flexible operation mode. Based on the actual operation characteristics of nuclear power units, the peak regulation depth of nuclear power units was linearized. The characteristics of peak shaving and valley filling of carbon capture power plants with integrated flexible operation mode were analyzed to realize binding peak regulation of nuclear-carbon capture units. Then, fuzzy parameters were introduced to characterize the uncertainty of wind power and load. On the premise of considering the safety and economy of nuclear power peak regulation, a multi-source coordinated fuzzy optimal scheduling model considering the benefit of wind power consumption was established by minimizing the total cost of joint operation as the objective function. The simulation example verifies the validity of the proposed model and method. The results show that the optimal dispatching model can improve the flexibility of power network dispatching and realize the economic and low-carbon operation on the basis of ensuring the safe operation of nuclear power.
[1] 李争, 张蕊, 孙鹤旭, 等. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报, 2021, 36(3): 446-462. Li Zheng, Zhang Rui, Sun Hexu, et al.Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 446-462. [2] 孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19): 4071-4083. Sun Hexu, Li Zheng, Chen Aibing, et al.Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083. [3] 宋翔宇. 世界核电发展现状[J]. 中国核电, 2017, 10(3): 439-443. Song Xiangyu.World nuclear power status[J]. China Nuclear Power, 2017, 10(3): 439-443. [4] 王政, 伍浩松. IAEA公布2019年全球核电数据[J]. 国外核新闻, 2020(8): 22-24. Wang Zheng, Wu Haosong. IAEA releases global nuclear power data for2019[J]. Foreign Nuclear News, 2020(8): 22-24. [5] 罗桓桓, 王昊, 葛维春, 等. 考虑报价监管的动态调峰辅助服务市场竞价机制设计[J]. 电工技术学报, 2021, 36(9): 1935-1947. Luo Huanhuan, Wang Hao, Ge Weichun, et al.Design of dynamic peak regulation ancillary service market bidding mechanism considering quotation supervision[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1935-1947. [6] 麻秀范, 王戈, 朱思嘉, 等. 计及风电消纳与发电集团利益的日前协调优化调度[J]. 电工技术学报, 2021, 36(3): 579-587. Ma Xiufan, Wang Ge, Zhu Sijia, et al.Coordinated day-ahead optimal dispatch considering wind power consumption and the benefits of power generation group[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 579-587. [7] 王骏, 赵洁, 刘涤尘, 等. 考虑核电参与的调峰优化运行模型[J]. 中国电机工程学报, 2018, 38(6): 1665-1674, 1903. Wang Jun, Zhao Jie, Liu Dichen, et al.Optimal scheduling model of peak load regulation considering participation of nuclear power plant[J]. Proceedings of the CSEE, 2018, 38(6): 1665-1674, 1903. [8] 李旭东, 艾欣, 胡俊杰, 等. 计及碳交易机制的核-火-虚拟电厂三阶段联合调峰策略研究[J]. 电网技术, 2019, 43(7): 2460-2470. Li Xudong, Ai Xin, Hu Junjie, et al.Three-stage combined peak regulation strategy for nuclear-thermal-virtual power plant considering carbon trading mechanism[J]. Power System Technology, 2019, 43(7): 2460-2470. [9] 林毅, 潘玺安, 林章岁, 等. 含高比例核电的电力系统调峰技术综述[J]. 现代电力, 2020, 37(1): 51-58. Lin Yi, Pan Xian, Lin Zhangsui, et al.Review of peak regulation for power system with a high penetration of nuclear power[J]. Modern Electric Power, 2020, 37(1): 51-58. [10] 周刚. 考虑核电参与的多类型电源联合调峰优化方法[J]. 电网技术, 2019, 43(3): 928-935. Zhou Gang.An approach on coordinative peaking optimization for power system with nuclear power plant participation[J]. Power System Technology, 2019, 43(3): 928-935. [11] Wang Jun, Zhao Jie, Ye Xiaoli, et al.Safety constraints and optimal operation of large-scale nuclear power plant participating in peak load regulation of power system[J]. IET Generation, Transmission & Distribution, 2017, 11(13): 3332-3340. [12] 胡弘, 韦化, 李昭昱. 风电接入下核电参与电力系统调峰的协调优化模型[J]. 电力自动化设备, 2020, 40(5): 31-39. Hu Hong, Wei Hua, Li Zhaoyu.Coordinated optimization model considering nuclear power participating in peak load regulation of power system with wind power[J]. Electric Power Automation Equipment, 2020, 40(5): 31-39. [13] 侯文庭, 韦化. 考虑核电可调度性的风-光-核-水-火多源协调短期优化调度[J]. 电工技术学报, 2018, 33(12): 2873-2882. Hou Wenting, Wei Hua.A multi-source coordinated short-term dispatch model considering the dispatchability of nuclear power plants[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2873-2882. [14] Li Xue, Zhang Rufeng, Bai Linquan, et al.Stochastic low-carbon scheduling with carbon capture power plants and coupon-based demand response[J]. Applied Energy, 2018(210): 1219-1228. [15] 卢志刚, 隋玉珊, 冯涛, 等. 考虑储热装置与碳捕集设备的风电消纳低碳经济调度[J]. 电工技术学报, 2016, 31(17): 41-51. Lu Zhigang, Sui Yushan, Feng Tao, et al.Wind power accommodation low-carbon economic dispatch considering heat accumulator and carbon capture devices[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 41-51. [16] 康重庆, 陈启鑫, 夏清. 应用于电力系统的碳捕集技术及其带来的变革[J]. 电力系统自动化, 2010, 34(1): 1-7. Kang Chongqing, Chen Qixin, Xia Qing.Innovation incurred by carbon capture technologies utilized in power systems[J]. Automation of Electric Power Systems, 2010, 34(1): 1-7. [17] Chen Qixin, Kang Chongqing, Xia Qing.Modeling flexible operation mechanism of CO2 capture power plant and its effects on power-system operation[J]. IEEE Transactions on Energy Conversion, 2010, 25(3): 853-861. [18] 周任军, 孙洪, 唐夏菲, 等. 双碳量约束下风电-碳捕集虚拟电厂低碳经济调度[J]. 中国电机工程学报, 2018, 38(6): 1675-1683, 1904. Zhou Renjun, Sun Hong, Tang Xiafei, et al.Low-Carbon economic dispatch based on virtual power plant made up of carbon capture unit and wind power under double carbon constraint[J]. Proceedings of the CSEE, 2018, 38(6): 1675-1683, 1904. [19] 孙惠娟, 蒙锦辉, 彭春华. 风-光-水-碳捕集多区域虚拟电厂协调优化调度[J]. 电网技术, 2019, 43(11): 4040-4051. Sun Huijuan, Meng Jinhui, Peng Chunhua.Coordinated optimization scheduling of multi-region virtual power plant with wind-power /photovoltaic /hydropower /carbon-capture units[J]. Power System Technology, 2019, 43(11): 4040-4051. [20] Fang Xin, Hu Qinran, Li Fangxing, et al.Coupon-based demand response considering wind power uncertainty: a strategic bidding model for load serving entities[J]. IEEE Transactions on Power System, 2016, 31(2): 1025-1037. [21] Yin Jiafu, Zhao Dongmei.Economic dispatch coordinated with information granule chance constraint goal programming under the manifold uncertainties[J]. IET Renewable Power Generation, 2019, 13(8): 1329-1337. [22] Cany C, Mansilla C, Mathonnière G, et al.Nuclear power supply: going against the misconceptions. Evidence of nuclear flexibility from the French experience[J]. Energy, 2018(151): 289-296. [23] 邵尤国, 赵洁, 刘涤尘, 等. 考虑核电调峰的风电-核电协调优化调度[J]. 中国电机工程学报, 2019, 39(4): 1018-1029. Shao Youguo, Zhao Jie, Liu Dichen, et al.Coordinated optimal dispatch of wind-nuclear power considering peak load shaving of nuclear power plant[J]. Proceedings of the CSEE, 2019, 39(4): 1018-1029. [24] 崔杨, 曾鹏, 惠鑫欣, 等. 考虑碳捕集电厂综合灵活运行方式的低碳经济调度[J]. 电网技术, 2021, 45(5): 1877-1886. Cui Yang, Zeng Peng, Hui Xinxin, et al.Low-carbon economic dispatch considering the integrated flexible operation mode of carbon capture power plant[J]. Power System Technology, 2021, 45(5): 1877-1886. [25] 熊虎, 向铁元, 陈红坤, 等. 含大规模间歇式电源的模糊机会约束机组组合研究[J]. 中国电机工程学报, 2013, 33(13): 36-44. Xiong Hu, Xiang Tieyuan, Chen Hongkun, et al.Research of fuzzy chance constrained unit commitment containing large-scale intermittent power[J]. Proceedings of the CSEE, 2013, 33(13): 36-44. [26] IRENA. Renewable power generation costs in 2017[R]. Abu Dhabi: International Renewable Energy Agency, 2018. [27] 中华人民共和国国家发展和改革委员会. 国家发展改革委关于调整光伏发电陆上风电标杆上网电价的通知[EB/OL]. 2016. http://www.ndrc.gov.cn/fzgggz/jggl/ zcfg/201612/t20161228_833049.html. [28] 崔杨, 曾鹏, 王铮, 等. 考虑碳捕集电厂能量转移特性的弃风消纳多时间尺度调度策略[J]. 中国电机工程学报, 2021, 41(3): 946-961. Cui Yang, Zeng Peng, Wang Zheng, et al.Multiple time scales scheduling strategy of wind power dissipation considering energy transfer characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2021, 41(3): 946-961. [29] 孙宇军, 王岩, 王蓓蓓, 等. 考虑需求响应不确定性的多时间尺度源荷互动决策方法[J]. 电力系统自动化, 2018, 42(2): 106-113, 159. Sun Yujun, Wang Yan, Wang Beibei, et al.Multi-time scale decision method for source-load interaction considering demand response uncertainty[J]. Automation of Electric Power Systems, 2018, 42(2): 106-113, 159.