Abstract:Large-scale wind power consumption increases the difficulty of system peak shaving. The unified dispatching of peaking resources may cause economic losses and environmental pollution that deviate from cost for units with deep peak shaving capability, and it is difficult to guarantee the fairness and enthusiasm of the peak shaving of the units. A day-ahead optimal dispatch model that combines centralized scheduling with the self-scheduled scheduling of power generation groups is proposed. Day-ahead optimal dispatch is divided into 2 stages. The first stage follows the traditional centralized scheduling method. The power generation plan is formed with the goal of the lowest system coal consumption, then the total power generation plan of each group is obtained according to the unit power generation plan. In the second stage, each group maintains the total power generation plan unchanged and internally optimizes the group's lowest power generation cost, then re-forms each unit's power generation plan. As an independent interest group, each power generation group includes factors such as unit difference, deep peak shaving, and load interaction in the second stage target. The IEEE30 busbar example verifies that the model can alleviate the peaking pressure of the unit, reduce the rate of abandoned wind, and reduce the operating costs of the power generation group and the system.
通讯作者:
王 戈 男,1995年生,硕士研究生,研究方向为电力市场与电力系统调度运行。E-mail:iwangge@126. com
作者简介: 麻秀范 女,1970年生,博士,副教授,研究方向为电力市场、电动汽车、电力系统调度运行。E-mail:xfmhbdll@vip. sina. com
引用本文:
麻秀范, 王戈, 朱思嘉, 余思雨. 计及风电消纳与发电集团利益的日前协调优化调度[J]. 电工技术学报, 2021, 36(3): 579-587.
Ma Xiufan, Wang Ge, Zhu Sijia, Yu Siyu. Coordinated Day-Ahead Optimal Dispatch Considering Wind Power Consumption and the Benefits of Power Generation Group. Transactions of China Electrotechnical Society, 2021, 36(3): 579-587.
[1] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205. Zhou Xiaoxin, Chen Shuyong, Lu Zongxiang, et al.Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205. [2] 唐程辉, 张凡, 张宁, 等. 基于风电场总功率条件分布的电力系统经济调度二次规划方法[J]. 电工技术学报, 2019, 34(10): 2069-2078. Tang Chenghui, Zhang Fan, Zhang Ning, et al.Quadratic programming for power system economic dispatch based on the conditional probability distribution of wind farms sum power[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2069-2078. [3] 车泉辉, 娄素华, 吴耀武, 等. 计及条件风险价值的含储热光热电站与风电电力系统经济调度[J]. 电工技术学报, 2019, 34(10): 2047-2055. Che Quanhui, Lou Suhua, Wu Yaowu, et al.Economic dispatching for power system of concentrated solar power plant with thermal energy storage and wind power considering conditional value-at-risk[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2047-2055. [4] 刘飞, 陶昕, 张祥成, 等. 基于电网消纳能力的新能源发展策略研究[J]. 电气技术, 2019, 20(6): 50-55. Liu Fei, Tao Xin, Zhang Xiangcheng, et al.Research on optimal matching scheme of renewable energy based on renewable energy consumption ability[J]. Electrical Engineering, 2019, 20(6): 50-55. [5] 刘永奇, 张弘鹏, 李群, 等. 东北电网电力调峰辅助服务市场设计与实践[J]. 电力系统自动化, 2017, 41(10): 148-154. Liu Yongqi, Zhang Hongpeng, Li Qun, et al.Design and practice of peak regulation ancillary service market for northeast China power grid[J]. Automation of Electric Power Systems, 2017, 41(10): 148-154. [6] 黎灿兵, 尚金成, 李响, 等. 集中调度与发电企业自主调度相协调的节能调度体系[J]. 中国电机工程学报, 2011, 31(7): 112-118. Li Canbing, Shang Jincheng, Li Xiang, et al.Novel energy-saving generation dispatching system based on the coordination of centralized dispatching and autonomy-dispatching of generators generation companies[J]. Proceedings of the CSEE, 2011, 31(7): 112-118. [7] 李响. 集中调度与发电企业自主调度协调体系研究[D]. 郑州: 郑州大学, 2012. [8] 牛玉广, 谭文, 苏凯, 等. 节能发电调度的网厂两级优化方案[J]. 中国电力, 2010, 43(9): 15-18. Niu Yuguang, Tan Wen, Su Kai, et al.Hierarchical optimization scheme for energy-saving power generation dispatching[J]. Electric Power, 2010, 43(9): 15-18. [9] 陈晓东, 荆朝霞, 郑杰辉, 等. 基于动态煤耗模型的电厂厂级发电负荷调度[J]. 电网技术, 2016, 40(8): 2464-2470. Chen Xiaodong, Jing Zhaoxia, Zheng Jiehui, et al.Plant-level generation load dispatch based on dynamic coal consumption model[J]. Power System Technology, 2016, 40(8): 2464-2470. [10] 彭飞翔, 李晓晶, 孙辉, 等. 考虑发电集团利益主体协调的风电消纳调度策略[J]. 电力系统自动化, 2018, 42(18): 98-108. Peng Feixiang, Li Xiaojing, Sun Hui, et al.Dispatch strategy for wind power accommodation considering coordination of power generation group stakeholders[J]. Automation of Electric Power Systems, 2018, 42(18): 98-108. [11] 别朝红, 胡国伟, 谢海鹏, 等. 考虑需求响应的含风电电力系统的优化调度[J]. 电力系统自动化, 2014, 38(13): 115-120, 159. Bie Zhaohong, Hu Guowei, Xie Haipeng, et al.Optimal dispatch for wind power integrated systems considering demand response[J]. Automation of Electric Power Systems, 2014, 38(13): 115-120, 159. [12] Sioshansi R, Short W.Evaluating the impacts of real-time pricing on the usage of wind generation[J]. IEEE Transactions on Power Systems, 2009, 24(2): 516-524. [13] 郭鹏, 文晶, 朱丹丹, 等. 基于源-荷互动的大规模风电消纳协调控制策略[J]. 电工技术学报, 2017, 32(3): 1-9. Guo Peng, Wen Jing, Zhu Dandan, et al.The coordination control strategy for large-scale wind power consumption based on source-load interactive[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 1-9. [14] 徐青山, 刘梦佳, 戴蔚莺, 等. 计及用户响应不确定性的可中断负荷储蓄机制[J]. 电工技术学报, 2019, 34(15): 3198-3208. Xu Qingshan, Liu Mengjia, Dai Weiying, et al.Interruptible load based on deposit mechanism considering uncertainty of customer behavior[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3198-3208. [15] 贾雨龙, 米增强, 余洋, 等. 计及不确定性的柔性负荷聚合商随机-鲁棒投标决策模型[J]. 电工技术学报, 2019, 34(19): 4096-4107. Jia Yulong, Mi Zengqiang, Yu Yang, et al.Stochastic-robust decision-making model for flexible load aggregator considering uncertainties[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4096-4107. [16] 宁佳, 汤奕, 高丙团. 基于需求响应潜力时变性的风火荷协同控制方法[J]. 电工技术学报, 2019, 34(8): 1728-1738. Ning Jia, Tang Yi, Gao Bingtuan.Coordinated control method of wind farm-AGC unit-load based on time-varying characteristics of demand response potential[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1728-1738. [17] 舒隽, 孙浩男, 韩冰. 考虑工业大用户负荷转移的安全约束机组组合[J]. 现代电力, 2018, 35(2): 30-37. Shu Jun, Sun Haonan, Han Bing.Security-constrained unit commitment considering load transfer of large industrial consumers[J]. Modern Electric Power, 2018, 35(2): 30-37. [18] 张粒子, 周娜, 王楠. 大规模风电接入电力系统调度模式的经济性比较[J]. 电力系统自动化, 2011, 35(22): 105-110. Zhang Lizi, Zhou Na, Wang Nan.Economic comparison for different generation schedulings with large scale wind power connected power system[J]. Automation of Electric Power Systems, 2011, 35(22): 105-110. [19] 谢俊, 李振坤, 章美丹, 等. 机组调峰的价值量化与费用补偿[J]. 电工技术学报, 2013, 28(1): 271-276. Xie Jun, Li Zhenkun, Zhang Meidan, et al.Peaking value quantification and cost compensation for generators[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 271-276. [20] 林俐, 田欣雨. 基于火电机组分级深度调峰的电力系统经济调度及效益分析[J]. 电网技术, 2017, 41(7): 2255-2263. Lin Li, Tian Xinyu.Analysis of deep peak regulation and its benefit of thermal units in power system with large scale wind power integrated[J]. Power System Technology, 2017, 41(7): 2255-2263. [21] 邹兰青. 规模风电并网条件下火电机组深度调峰多角度经济性分析[D]. 北京: 华北电力大学, 2017. [22] 崔杨, 纪银锁, 仲悟之, 等. 计及需求响应及环保成本的含储热CHP与风电联合优化调度[J]. 电网技术: 2020, 44(2): 655-663. Cui Yang, Ji Yinsuo, Zhong Wuzhi, et al.Joint optimal dispatching of CHP with heat storage and wind power considering demand response and environmental protection cost[J]. Power System Technology, 2020, 44(2): 655-663. [23] 张弘鹏, 高德宾, 张健男, 等. 东北电力调峰辅助服务市场的发展之路[J]. 中国电力企业管理, 2018(28): 26-29. Zhang Hongpeng, Gao Debin, Zhang Jiannan, et al.The development road of northeast electric power peaking auxiliary service market[J]. China Power Enterprise Management, 2018(28): 26-29. [24] 刘鹏. 火电厂参与调峰辅助服务策略研究[J]. 东北电力技术, 2018, 39(4): 34-37. Liu Peng.Research on coal fired generator participating in peak valley dispatching ancillary service strategy[J]. Northeast Electric Power Technology, 2018, 39(4): 34-37. [25] 杨志平, 李柯润, 王宁玲, 等. 考虑经济性与环保性的火电机组调峰补偿机制[J]. 工程热物理学报, 2018, 39(10): 2124-2130. Yang Zhiping, Li Kerun, Wang Ningling, et al.A model of considering the economic analysis and environmental protection for thermal power compensation on peak regulation[J]. Journal of Engineering Thermophysics, 2018, 39(10): 2124-2130. [26] Daneshi H, Srivastava A K.ERCOT electricity market: transition from zonal to nodal market operation[C]//2011 IEEE Power and Energy Society General Meeting, San Diego, CA, 2011: 1-7. [27] 贺宜恒, 周明, 武昭原, 等. 国外典型电力平衡市场的运作模式及其对中国的启示[J]. 电网技术, 2018, 42(11): 3520-3528. He Yiheng, Zhou Ming, Wu Zhaoyuan, et al.Study on operation mechanism of foreign representative balance markets and its enlightenment for China[J]. Power System Technology, 2018, 42(11): 3520-3528. [28] 王鹏, 韩志辉. 电力辅助服务建设的渐进模式——中国电力辅助服务市场化二十年的历史经验[J]. 中国电力企业管理, 2018(28): 12-15. Wang Peng, Han Zhihui.The gradual model of the construction of auxiliary power services—twenty years of historical experience in the marketization of auxiliary power services in China[J]. China Power Enterprise Management, 2018(28): 12-15. [29] Ma H, Shahidehpour S M, Marwali M K C. Transmission constrained unit commitment based on benders decomposition[C]//American Control Conference, Albuquerque, USA, 1997, 4: 2263-2267.