Renewable Energy Accommodation-Based Strategy for Electric Vehicle Considering Dynamic Interaction in Microgrid
Yang Xiaodong1, Zhang Youbing1, Jiang Yangchang1, Xie Luyao1, Zhao Bo2
1. College of Information Engineering Zhejiang University of Technology Hangzhou 310023 China; 2. State Grid Zhejiang Electric Power Research Institute Hangzhou 310014 China
Abstract:The growing electric demand of electric vehicle (EV), coupled with increased penetration of photovoltaic (PV), promotes the research on the cooperation utilization between EV and the microgrid with a high penetration level of PV. In this paper, a dynamic control strategy for EV considering interaction response is proposed to increase renewable energy accommodation in the microgrid. Firstly, considering the relationship between PV power output supply and load demand in the microgrid, the virtual price mechanism is developed combined with real-time price and inclining block rates. Secondly, a new optimization framework for EV is presented as a mixed integer programming model to maximize the PV accommodation based on the proposed virtual price. In order to deal with the adverse impacts caused by the uncertainties of PV power output, a model predictive control method is applied to realizing dynamic interactive response control for EV. Finally, taking the microgrid in a certain office area as an example, the simulation results show that the proposed dynamic control strategy can make the demand side resource actively match PV power output, improve the PV accommodation and load characteristic, and achieve various economic benefits.
[1] Apostolopoulou D, Bahramirad S, Khodaei A. The interface of power: moving toward distribution system operators[J]. IEEE Power and Energy Magazine, 2016, 14(3): 46-51. [2] Khodaei A. Resiliency-oriented microgrid optimal scheduling[J]. IEEE Transactions on Smart Grid, 2014, 5(4): 1584-1591. [3] Dimitrova Z, Marechal F. Techno-economic design of hybrid electric vehicles using multi objective optimi- zation techniques[J]. Energy, 2015, 91: 630-644. [4] 杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J]. 中国电机工程学报, 2014, 34(1): 57-70. Yang Xinfa, Su Jian, Lü Zhipeng, et al. Overview on micro-grid technology[J]. Proceedings of the CSEE, 2014, 34(1): 57-70. [5] Illindala M, Venkataramanan G. Frequency/sequence selective filters for power quality improvement in a microgrid[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 2039-2047. [6] Khodayar M E, Barati M, Shahidehpour M. Integration of high reliability distribution system in microgrid operation[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1997-2006. [7] 杨冰, 王丽芳, 廖承林, 等. 电动汽车与分布式电源协同有序控制研究[J]. 电工技术学报, 2015, 30(14): 419-426. Yang Bing, Wang Lifang, Liao Chenglin, et al. Study of coordinated charging control for electric vehicles in correlation with distributed power source[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 419-426. [8] 翁国庆, 张有兵, 戚军, 等. 多类型电动汽车电池集群参与微网储能的V2G可用容量评估[J]. 电工技术学报, 2014, 29(8): 36-45. Weng Guoqing, Zhang Youbing, Qi Jun, et al. Evaluation for V2G available capacity of battery groups of electric vehicles as energy storage elements in microgrid[J]. Transactions of China Electro- technical Society, 2014, 29(8): 36-45. [9] Abdollah K F, Amin K. Efficient integration of plug- in electric vehicles via reconfigurable microgrids[J]. Energy, 2016, 111: 653-663. [10] Abdorreza R, Mohammad S, Jamshid A, et al. Optimal operation of microgrids through simu- ltaneous scheduling of electrical vehicles and responsive loads considering wind and PV units uncertainties[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 721-739. [11] 陈奇芳, 刘念, 陈征, 等. 考虑充电需求与随机事件的光伏充电站实时运行策略[J]. 电工技术学报, 2016, 31(18): 142-150. Chen Qifang, Liu Nian, Chen Zheng, et al. Real-time operation strategy for PV-based EV charging station considering charging demand and random events[J]. Transactions of China Electrotechnical Society, 2016, 31(18): 142-150. [12] 张明锐, 陈洁, 杜志超, 等. 考虑交互功率控制的微网经济运行[J]. 中国电机工程学报, 2014, 34(7): 1013-1023. Zhang Mingrui, Chen Jie, Du Zhichao, et al. Economic operation of micro-grid considering regulation of interactive power[J]. Proceedings of the CSEE, 2014, 34(7): 1013-1023. [13] 张明锐, 谢青青, 李路遥, 等. 考虑电动汽车能量管理的微网储能容量优化[J]. 中国电机工程学报, 2015, 35(18): 4663-4673. Zhang Mingrui, Xie Qingqing, Li Luyao, et al. Optimal sizing of energy storage for microgrids considering energy management of electric vehicles[J]. Proceedings of the CSEE, 2015, 35(18): 4663-4673. [14] 向月, 刘俊勇, 魏震波, 等. 考虑可再生能源出力不确定性的微电网能量优化鲁棒模型[J]. 中国电机工程学报, 2014, 34(19): 3063-3072. Xiang Yue, Liu Junyong, Wei Zhenbo, et al. Robust model of microgrid energy optimization with uncertain renewable energy sources[J]. Proceedings of the CSEE, 2014, 34(19): 3063-3072. [15] 刘小聪, 王蓓蓓, 李扬, 等. 计及需求侧资源的大规模风电消纳随机机组组合模型[J]. 中国电机工程学报, 2015, 35(14): 3714-3723. Liu Xiaocong, Wang Beibei, Li Yang, et al. Stochastic unit commitment model for high wind power integration considering demand side resources[J]. Proceedings of the CSEE, 2015, 35(14): 3714-3723. [16] 刘方, 杨秀, 时珊珊, 等. 考虑不确定因素下含充换储一体化电站的微网能量优化[J]. 电网技术, 2015, 39(3): 669-676. Liu Fang, Yang Xiu, Shi Shanshan, et al. Economic operation of microgrid containing charging swapping storage integrated station under uncertain factors of wind farm and photovoltaic generation[J]. Power System Technology, 2015, 39(3): 669-676. [17] Zhao Z, Lee W C, Shin Y, et al. An optimal power scheduling method for demand response in home energy management system[J]. IEEE Transactions on Smart Grid, 2013, 4(3): 1391-1400. [18] Ahmad G, Seyed S M, Elaheh M. Hourly demand response and battery energy storage for imbalance reduction of smart distribution company embedded with electric vehicles and wind farms[J]. Renewable Energy, 2016, 85: 124-136. [19] Luigi S, Massimiliano S, Chiara T. Demand response management by means of heat pumps controlled via real time pricing[J]. Energy and Buildings, 2015, 90: 15-28. [20] 杨晓东, 张有兵, 任帅杰, 等. 含高渗透率光伏发电并网型微网中的电动汽车优化调度方法[J]. 电力系统自动化, 2016, 40(18): 15-23. Yang Xiaodong, Zhang Youbing, Ren Shuaijie, et al. Optimal scheduling of electric vehicles charging and discharging in grid-connected microgrid with high photovoltaic power penetration[J]. Automation of Electric Power Systems, 2016, 40(18): 15-23. [21] Ma Li, Liu Nian, Wang Lingfeng, et al. Multi-party energy management for smart building cluster with PV systems using automatic demand response[J]. Energy and Buildings, 2016, 121: 11-21. [22] Yang P, Tang G, Nehorai A. A game-theoretic approach for optimal time-of-use electricity pricing[J]. IEEE Transactions on Power Systems, 2013, 28(2): 884-892. [23] Mesut A, Murat E, Amir R, et al. Model predictive HVAC load control in buildings using real-time electricity pricing[J]. Energy and Buildings, 2013, 60: 199-209. [24] Hans C G. Economic potential for future demand response in Germany-modeling approach and case study[J]. Applied Energy, 2016, 162: 401-415. [25] Amir H M R, Alberto L G. Optimal residential load control with price prediction in real-time electricity pricing environments[J]. IEEE Transactions on Smart Grid, 2010, 1(2): 120-133. [26] Diana N, Miguel C B, Carlos A S. Impact of solar and wind forecast uncertainties on demand response of isolated microgrids[J]. Renewable Energy, 2016, 87: 1003-1015. [27] Alessandra P, Evangelos R, George T, et al. Use of model predictive control for experimental microgrid optimization[J]. Applied Energy, 2014, 115: 37-46. [28] 杨晓东, 张有兵, 翁国庆, 等. 基于虚拟电价的电动汽车充放电优化调度及其实现机制研究[J]. 电工技术学报, 2016, 31(17): 52-62. Yang Xiaodong, Zhang Youbing, Weng Guoqing, et al. Virtual time-of-use tariffs based optimal scheduling and implementation mechanism of electric vehicles charging and discharging[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 52-62. [29] 徐智威, 胡泽春, 宋永华, 等. 基于动态分时电价的电动汽车充电站有序充电策略[J]. 中国电机工程学报, 2014, 34(22): 3638-3646. Xu Zhiwei, Hu Zechun, Song Yonghua, et al. Coordinated charging strategy for PEV charging station based on dynamic time-of-use tariffs[J]. Proceedings of the CSEE, 2014, 34(22): 3638-3646.