Research on Measurement of Post-Arc Current of Mechanical Vacuum DC Circuit Breaker
Cheng Xian1,2, Xu Pengfei1,2, Ge Guowei1,2, Li Xin1,2, Tian Xiaoqian1,2
1. School of Electrical Engineering Zhengzhou University Zhengzhou 450000 China; 2. Henan Power Transmission and Distribution Equipment and Electrical Insulation Engineering Research Center Zhengzhou 450000 China
Abstract:The post-arc characteristic of mechanical DC circuit breaker is an important parameter to characterize its breaking performance. In order to obtain the influence law of vacuum switch post-arc current, post-arc action time, di/dt and du/dt near current zero point during DC breaking process, this paper firstly analyzed the post-arc current of mechanical vacuum DC circuit breaker based on current transfer measurement principle. Then, the parameters of the mechanical DC circuit breaker arc current measurement device were designed, and a mechanical DC breaking experiment platform based on the forced zero crossing method was built. The mechanical vacuum DC circuit breaker arc was measured under the condition that the breaking current was 1.5kA, and the influence of the commutation frequency and the recovery voltage on post-arc current was discussed. The results show that the post-arc current measuring device based on current transfer can effectively measure the post-arc current. The increase of the commutation frequency and the recovery voltage will cause the post-arc current to increase. The recovery voltage slightly lags behind the post-arc current in phase by about 100 ns, and the change influence of the directional frequency on the post-arc current is greater than that of the recovery voltage, which provides a reference for the optimization research of the circuit breaker's breaking performance.
程显, 徐鹏飞, 葛国伟, 李鑫, 田小倩. 机械式真空直流断路器弧后电流测量研究[J]. 电工技术学报, 2021, 36(16): 3516-3524.
Cheng Xian, Xu Pengfei, Ge Guowei, Li Xin, Tian Xiaoqian. Research on Measurement of Post-Arc Current of Mechanical Vacuum DC Circuit Breaker. Transactions of China Electrotechnical Society, 2021, 36(16): 3516-3524.
[1] 王建华, 项彬, 杨騉, 等. 超导限流直流开断技术研究[J]. 电工技术学报, 2019, 34(20): 4196-4207. Wang Jianhua, Xiang Bin, Yang Yin, et al.Research on superconducting current-limiting DC breaking technology[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4196-4207. [2] 徐政, 肖晃庆, 徐雨哲. 直流断路器的基本原理和实现方法研究[J]. 高电压技术, 2018, 44(2): 347-357. Xu Zheng, Xiao Huangqing, Xu Yuzhe.Reserach on basic principle and realization method of DC circuit breaker[J]. High Voltage Engineering, 2018, 44(2): 347-357. [3] 吴翊, 荣命哲, 钟建英, 等. 中高压直流开断技术[J]. 高电压技术, 2018, 44(2): 337-346. Wu Yi, Rong Mingzhe, Zhong Jianying, et al.Medium and high voltage DC breaking technology[J]. High Voltage Engineering, 2018, 44(2): 337-346. [4] 荣命哲, 杨飞, 吴翊, 等. 直流断路器电弧研究的新进展[J]. 电工技术学报, 2014, 29(1): 1-9. Rong Mingzhe, Yang Fei, Wu Yi, et al.New progress in arc research of DC circuit breaker[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 1-9. [5] 王灿, 杜船, 徐杰雄. 中高压直流断路器拓扑综述[J]. 电力系统自动化, 2020, 44(9): 187-199. Wang Can, Du Chuan, Xu Jiexiong.Overview of topology of medium and high voltage DC circuit breakers[J]. Automation of Electric Power Systems, 2020, 44(9): 187-199. [6] 魏晓光, 杨兵建, 汤广福. 高压直流断路器技术发展与工程实践[J]. 电网技术, 2017, 41(10): 3180-3188. Wei Xiaoguang, Yang Bingjian, Tang Guangfu.Technical development and engineering practice of high voltage DC circuit breaker[J]. Power System Technology, 2017, 41(10): 3180-3188. [7] 刘斌, 武建文. 直流真空电弧强迫开断电弧形态[J].电工技术学报, 2016, 31(24): 157-163. Liu Bin, Wu Jianwen.Arc shape of forced breaking of DC vacuum arc[J]. Transactions of China Electro- technical Society, 2016, 31(24): 157-163. [8] 陈占清, 段雄英, 廖敏夫, 等. 电弧参数对激光触发真空开关重频开断特性的影响[J]. 电工技术学报, 2019, 34(21): 4501-4507, 4600. Chen Zhanqing, Duan Xiongying, Liao Minfu, et al.Influence of arc parameters on repetitive switching characteristics of laser-triggered vacuum switch[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4501-4507, 4600. [9] 舒胜文, 阮江军, 黄道春. 真空断路器瞬态恢复电压与弧后电流相互作用仿真研究[J]. 高电压技术, 2014, 40(1): 309-316. Shu Shengwen, Ruan Jiangjun, Huang Daochun.Simulation study on interaction between transient recovery voltage and post-arc current of vacuum circuit breaker[J]. High Voltage Engineering, 2014, 40(1): 309-316. [10] 舒胜文, 阮江军, 黄道春, 等. 系统故障参数对真空断路器开断性能影响的建模与仿真研究[J]. 电力自动化设备, 2013, 33(11): 81-87. Shu Shengwen, Ruan Jiangjun, Huang Daochun, et al.Modeling and simulation research on the influence of system fault parameters on the opening performance of vacuum circuit breaker[J]. Electric Power Auto- mation Equipment, 2013, 33(11): 81-87. [11] Jia Shenli, Mo Yongpeng, Shi Zongqian, et al.Post- arc current simulation based on measurement in vacuum circuit breaker with a one-dimensional particle-in-cell model[J]. Physics of Plasmas, 2015, 24(10): 103511. [12] 刘晓明, 于德恩, 邹积岩. 基于连续过渡模型的直流真空断路器弧后介质恢复分析[J]. 真空科学与技术学报, 2014, 34(12): 1285-1289. Liu Xiaoming, Yu Deen, Zou Jiyan.Analysis of dielectric recovery after arc of DC vacuum circuit breaker based on continuous transition model[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(12): 1285-1289. [13] Odaka H, Yamada M, Sakuma R, et al.DC inter- ruption characteristic of vacuum circuit breaker[J]. Electrical Engineering in Japan, 2007, 161(1): 17-25. [14] Smeets R P P, Li H, Lamerichs N J G, et al. HF- reignition phenomena related to post-arc current in vacuum interrupters[C]//XVI International Symposium on Discharges and Electrical Insulation in Vacuum Meeting, Moscow, Russia, 1994: 203-207. [15] Pavelescu D, Nitu S, Dumitrescu G, et al.Post-arc current in low-voltage vacuum circuit breaker: mea- surements and physical peculiarities[J]. IEEE Transa- ctions on Plasma Science, 2003, 31(5): 869-876. [16] 李显鹏. 直流真空断路器电弧电流零区参数研究[D]. 大连: 大连理工大学, 2018. [17] 朱世明. 大电流真空电弧弧后介质恢复研究[D]. 武汉: 华中科技大学, 2012. [18] 葛国伟, 程显, 张鹏浩, 等. 多断口真空开关电弧磁场调控需求与机理[J]. 电工技术学报, 2018, 33(21): 5007-5014. Ge Guowei, Cheng Xian, Zhang Penghao, et al.Demand and mechanism of arc magnetic field control for multi-fracture vacuum switch[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 5007-5014. [19] 朱军, 李波, 阮江军, 等. 基于人工过零技术的直流真空分断过程分析及验证[J]. 电机与控制学报, 2019, 23(1): 63-72. Zhu Jun, Li Bo, Ruan Jiangjun, et al.Analysis and verification of DC vacuum breaking process based on artificial zero-crossing technology[J]. Electric Machines and Control, 2019, 23(1): 63-72. [20] 葛国伟, 程显, 王华清, 等. 低压混合式直流断路器中真空电弧电流转移判据[J]. 电工技术学报, 2019, 34(19): 4038-4047. Ge Guowei, Cheng Xian, Wang Huaqing, et al.Criteria for vacuum arc current transfer in low- voltage hybrid DC circuit breakers[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4038-4047. [21] 张大伟, 马超. 电爆炸丝的爆炸电特性试验研究[J].沈阳理工大学学报, 2013, 32(3): 57-60. Zhang Dawei, Ma Chao.Experimental study on explosive electrical characteristics of electric explosive wire[J]. Journal of Shenyang Ligong University, 2013, 32(3): 57-60. [22] Christen T, Peinke E.Bifurcation theory of ac electric arcing[J]. Journal of Physics D: Applied Physics, 2012, 45(6): 065202. [23] 张俊杰, 张文学. 大功率电源上电冲击电流限制电阻的设计[J]. 现代电子技术, 2006(9): 140-141. Zhang Junjie, Zhang Wenxue.Design of current limiting resistance for power impulse in high power supply[J]. Modern Electronics Technique, 2006(9): 140-141. [24] Andrews J G, Varey R H.Sheath growth in a low pressure plasma[J]. Physics of Fluids, 1971, 14(2): 339-343. [25] Varey R H, Sander K F.Dynamic sheath growth in mercury plasma[J]. Journal of Physics D-Applied Physics, 1969, 4(2): 541-550. [26] 程显, 杨培远, 葛国伟, 等. 基于电流转移的CO2气体断路器动态介质恢复特性[J]. 电工技术学报, 2019, 34(23): 5030-5038. Cheng Xian, Yang Peiyuan, Ge Guowei, et al.Dynamic dielectric recovery characteristics of CO2 gas circuit breaker based on current transfer[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 5030-5038. [27] Qin Taotao, Zhang Ying, Dong Enyuan.Characteri- stics of high frequency interruption for vacuum DC breakers[J]. Physics of Plasmas, 2018, 25(8): 083515. [28] Orama L R.Numerical modeling of high-voltage circuit breaker arcs and their interaction with the power system[D]. Troy: Rensselaer Polytechnic Institute, 1997. [29] Andrews J G, Varey R H.Sheath growth in a low pressure plasma[J]. Physics of Fluids, 1971, 14(2): 339-343.