Parameters Identification of Equivalent Model of Permanent Magnet Synchronous Generator Wind Farm Based on Analysis of Trajectory Sensitivity
Zhang Jian1, He Yigang2
1. School of Electric and Automation Engineering Hefei University of Technology Hefei 230009 China; 2. School of Electric Engineering and Automation Wuhan University Wuhan 430072 China
Abstract:A large-scale wind farm connected to power grid has huge impact on the stability of power system. In order to improve simulation speed, it is essential to investigate the equivalent model of wind farm. In this paper, in view of the fact that the traditional aggregation method cannot solve the problem of parameter variation during long-term operation of wind farms, and manufacturers regard control system parameters as commercial secrets, a detailed equivalent model of permanent magnet synchronous generators(PMSG) wind farm and initialization method is established. The trajectory sensitivity of parameters is analyzed. Parameters identification strategy that the time-varying parameters with high sensitivity and control parameters with high sensitivity are identified using improved genetic learning particle swarm optimization (GLPSO) hybrid algorithm based on phasor measurement unit (PMU) data at the common interconnection point of wind farm while other parameters are fixed to aggregated or typical values is proposed. The robustness and adaptability of the equivalent model of PMSG wind farm under different wind speeds, wake effects, and when some PMSG are off-line or wind speed is unknown are analyzed. The global searching ability to find the optimum point of the proposed improved GLPSO is also validated.
张剑, 何怡刚. 基于轨迹灵敏度分析的永磁直驱风电场等值模型参数辨识[J]. 电工技术学报, 2020, 35(15): 3303-3313.
Zhang Jian, He Yigang. Parameters Identification of Equivalent Model of Permanent Magnet Synchronous Generator Wind Farm Based on Analysis of Trajectory Sensitivity. Transactions of China Electrotechnical Society, 2020, 35(15): 3303-3313.
[1] Zhang Jian, Cui Mingjian, He Yigang, et al.Primal dual interior point dynamic programming for coordinated charging of EVs[J]. Journal of Modern Power Systems and Clean Energy, 2017, 5(6): 1004-1015. [2] 苗磊, 张勇军, 童朝南, 等. 基于模型预测直接转矩控制的永磁同步发电机效率优化研究[J]. 电工技术学报, 2018, 33(15): 3535-3546. Miao Lei, Zhang Yongjun, Tong Zhaonan, et al.Efficiency optimization of permanent magnet synchronous generators based on model predictive direct torque control[J]. Transactions of China Electro technical Society, 2018, 33(15): 3535-3546. [3] Zhang Jian, Cui Mingjian, Fang Hualiang, et al.Two novel load balancing platforms using common DC buses[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3): 1099-1107. [4] 关中杰, 鲁效平, 李钢强, 等. 基于风速模型的风电机组动态转矩前馈控制技术[J]. 电工技术学报, 2018, 32(22): 5338-5345. Guan Zhongjie, Lu Xiaoping, Li Gangqiang, et al.Dynamic torque feed forward control technology of wind turbine based on wind speed model[J]. Transactions of China Electrotechnical Society, 2018, 32(22): 5338-5345. [5] 苏田宇, 杜文娟, 王海风. 多直驱永磁同步发电机并联风电场次同步阻尼控制器降阶设计方法[J]. 电工技术学报, 2019, 34(1): 116-127. Su Tianyu, Du Wenjuan, Wang Haifeng.A reduced order design method for sub-synchronous damping controller of multi-PMSGs parallel wind farm[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 116-127. [6] 任必兴, 杜文娟, 王海风. 静止同步补偿器与直驱永磁风机的次同步控制交互研究[J]. 电工技术学报, 2018, 33(24): 5884-5896. Ren Bixing, Du Wenjuan, Wang Haifeng.Analysis on sub-synchronous control interaction between static synchronous compensator and permanent magnet synchronous generator[J]. Transactions of China Electrotechnical Society, 2018, 33(24): 5884-5896. [7] 唐飞, 刘扬, 施浩波, 等. 一种考虑风电场并网的大电网快速主动解列策略[J]. 电工技术学报, 2018, 33(24): 5884-5896. Tang Fei, Liu Yang, Shi Haobo, et al.A fast active islanding strategy for large power grid considering wind farm integration[J]. Transactions of China Electro technical Society, 2018, 33(24): 5884-5896. [8] Ruan Jiayang, Lu Zongxiang, Qiao Ying, et al.Transient stability of wind turbine adopting a generic model of DFIG and singularity-induced instability of generators/ units with power-electronic interface[J]. IEEE Transactions on Energy Conversion, 2015, 30(3): 1069-1080. [9] Kunjumuhammed L, Pal B, Gupta R, et al.Stability analysis of a PMSG-based large offshore wind farm connected to a VSC-HVDC[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 1166-1176. [10] Marandi V, Pak L, Dinavahi V.Real-time simulation of grid-connected wind farms using physical aggregation[J]. IEEE Transactions on Industrial Electronics, 2010, 57(9): 3010-3021. [11] Fernandeza L, Juradob F, Saenz J.Aggregated dynamic model for wind farms with doubly fed induction generator wind turbines[J]. Renewable Energy, 2008(33): 129-140. [12] Li Weixing, Chao Pupu, Liang Xiaodong, et al.A practical equivalent method for DFIG wind farms[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 610-620. [13] Ali M, Ilie I, Milanovic J, et al.Wind farm model aggregation using probabilistic clustering[J]. IEEE Transactions on Power Systems, 2013, 28(1): 309-316. [14] Zou Jianxiao, Peng Chao, Xu Hongbing, et al.A fuzzy clustering algorithm-based dynamic equivalent modeling method for wind farm with DFIG[J]. IEEE Transactions on Energy Conversion, 2015, 530(4): 1329-1337. [15] Wang Peng, Zhang Zhenyuan, Huang Qi, et al.Improved wind farm aggregated modeling method for large-scale power system stability studies[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6332-6342. [16] Zhang Yingchen, Muljadi E, Kosterev D, et al.Wind power plant model validation using synchrophasor measurements at the point of interconnection[J]. IEEE Transactions on Sustainable Energy, 2015, 6(3): 984-991. [17] Brochu J, Larose C, Gagnon R.Validation of single- and multiple-machine equivalents for modeling wind power plants[J]. IEEE Transactions on Energy Conversion, 2011, 26(2): 532-541. [18] Lin Jin, Cheng Lin.Model parameters identification method for wind farms based on wide-area trajectory sensitivities[J]. International Journal of Emerging Electric Power Systems, 2010, 11(5): 2. [19] 张剑, 孙元章. 含分布式电源的广义负荷建模研究[J]. 电网技术, 2011, 35(8): 41-46. Zhang Jian, Sun Yuanzhang.Generalized load modeling considering wind generators connected to distribution network[J]. Power System Technology, 2011, 35(8): 41-46. [20] Cheng Xueyang, Lee W, Sahni M, et al.Dynamic equivalent model development to improve the operation efficiency of wind farm[J]. IEEE Transactions on Industry Applications, 2016, 52(4): 2759-2767. [21] Wang Yinfeng, Lu Chao, Zhu Lipeng, et al.Comprehensive modeling and parameter identification of wind farms based on wide-area measurement systems[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(3): 383-393. [22] Kunjumuhammed L, Pal B, Oates C, et al.The adequacy of the present practice in dynamic aggregated modeling of wind farm systems[J]. IEEE Transactions on Sustainable Energy, 2017, 8(1): 23-32. [23] Kim D, Sharkawi M.Dynamic equivalent model of wind power plant using parameter identification[J]. IEEE Transactions on Energy Conversion, 2016, 31(1): 37-45. [24] Zhou Yuhao, Zhao Long, Lee W.Robustness analysis of dynamic equivalent model of DFIG wind farm for stability study[J]. IEEE Transactions on Industry Applications, 2018, 54(6): 5682-5690. [25] Gong Yuejiao, Li Jingjing, Zhou Yicong, et al.Genetic learning particle swarm optimization[J]. IEEE Transactions on Cybernetics, 2016, 46(10): 2277-2289.