Stability Analysis and Efficiency Optimization Design of Bilateral LCC Inductively Coupled Power Transmission System
Cai Jin1, Wu Xusheng1, Hu Fengge2, Sun Pan1, Sun Jun1
1. College of Electrical Engineering Naval University of Engineering Wuhan 430033 China; 2. National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China
Abstract:The soft switching characteristics of the bilateral LCC inductively coupled wireless power transmission system are susceptible to system parameter disturbances. In order to improve the stability of the zero-voltage soft switching of the system, the system equivalent input impedance angle model and efficiency model are derived. Then, the disturbance analysis of the system's multi-topological parameters is carried out, and the influence of load changes on the system's equivalent input impedance angle and efficiency is studied. The key parameter configuration method is proposed. Finally, a test prototype with a working frequency of 86kHz, an output power of 2kW and a transmission distance of 15cm was built to verify the correctness of the theory. Simulation and test results show that the method in this paper has good load adaptability..
蔡进, 吴旭升, 胡风革, 孙盼, 孙军. 双边LCC感应耦合式无线电能传输系统的稳定性分析与效率优化设计[J]. 电工技术学报, 2020, 35(zk2): 355-362.
Cai Jin, Wu Xusheng, Hu Fengge, Sun Pan, Sun Jun. Stability Analysis and Efficiency Optimization Design of Bilateral LCC Inductively Coupled Power Transmission System. Transactions of China Electrotechnical Society, 2020, 35(zk2): 355-362.
[1] 张波, 疏许健, 黄润鸿. 感应和谐振无线电能传输技术的发展[J]. 电工技术学报, 2017, 32(18): 3-17. Zhang Bo, Shu Xujian, Huang Runhong.The development of inductive and resonant wireless power transfer technology[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 3-17. [2] Li Ying, Vikram Jandhyala.Design of retrodirective antenna arrays for short-range wireless power transmission[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(1): 206-211. [3] 程时杰, 陈小良, 王军华, 等. 无线输电关键技术及其应用[J]. 电工技术学报, 2015, 30(19): 68-84. Cheng Shijie, Chen Xiaoliang, Wang Junhua, et al.Key technologies and applications of wireless power transmission[J]. Ttransactions of China Electrote-chnical Society, 2015, 30(19): 68-84. [4] Li Weihan, Zhao Han, Deng Junhun, et al.Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4429-4439. [5] Li Qifan, Liang Y C.An inductive power transfer system with a high-Q resonant tank for mobile device charging[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6203-6212. [6] Zhang Wei, Wong S C, Tse C K, et al.Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems[J]. IEEE Transactions on Power Electronics, 2014, 29(1): 191-200. [7] 翟渊, 孙跃, 戴欣, 等. 磁共振模式无线电能传输系统建模与分析[J]. 中国电机工程学报, 2012, 32(12): 155-160. Zhai Yuan, Sun Yue, Dai Xin, et al.Modeling and analysis of magnetic resonance wireless power transmission system[J]. Proceedings of the CSEE, 2012, 32(12): 155-160. [8] 丰昊, 蔡涛, 段善旭, 等. LCL型感应式能量传输系统的时域特性分析[J]. 中国电机工程学报, 2016, 36(18): 4938-4945, 5118. Feng Hao, Cai Tao, Duan Shanxu, et al.Time-domain analysis of LCL compensated inductive power transfer systems[J]. Proceedings of the CSEE, 2016, 36(18): 4938-4945, 5118. [9] 周豪, 姚钢, 赵子玉, 等. 基于LCL谐振型感应耦合电能传输系统[J]. 中国电机工程学报, 2013, 33(33): 9-16, 2. Zhou Hao, Yao Gang, Zhao Ziyu, et al.LCL resonant inductively coupled power transfer systems[J]. Proceedings of the CSEE, 2013, 33(33): 9-16, 2. [10] Li Siqi, Mi Chunting.Wireless power transfer for electric vehicle applications[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2015, 3(1): 4-17. [11] Kan T, Nguyen T D, White J C, et al.A new integration method for an electric vehicle wireless charging system using LCC compensation topology: analysis and design[J]. IEEE Transactions on Power Electronics, 2017, 32(2): 1638-1650. [12] Li Siqi, Li Weihan, Deng Junjun, et al.A double-sided LCC compensation network and its tuning method for wireless power transfer[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6): 2261-2273. [13] 陆江华, 朱国荣, 黎文静, 等. 感应耦合能量传输系统中双边LCC谐振腔恒流和恒压模式的研究[J].中国电机工程学报, 2019, 39(9): 2768-2778. Lu Jianghua, Zhu Guorong, Li Wenjing, et al.Constant current and constant voltage outputs for double-sided LCC resonant tank in inductively coupled power transfer system[J]. Proceedings of the CSEE, 2019, 39(9): 2768-2778. [14] 张成良. 基于双边LCC拓扑结构的抗偏移静态无线充电系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [15] 李中启, 黄守道, 袁小芳. 线圈非同轴时磁耦合谐振式无线电能传输系统的效率优化[J]. 电工技术学报, 2017, 32(8): 151-159. Li Zhongqi, Huang Shoudao, Yuan Xiaofang.Optimum efficiency analysis of wireless power transfer system via coupled magnetic resonances with lateral and angular misalignments[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 151-159. [16] Pinuela M, Yates D C, Lucyszyn S, et al.Maximizing DC-to-load efficiency for inductive power transfer[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2437-2447. [17] 王智慧, 吕潇, 孙跃, 等. 谐振式无线电能传输系统损耗模型[J]. 电工技术学报, 2014, 29(9): 17-21. Wang Zhihui, Lü Xiao, Sun Yue, et al.Modeling of power loss in resonant wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 17-21. [18] 邓其军, 刘姜涛, 陈诚, 等. 应用于无线电能传输的Litz线平面矩形螺旋线圈高频电阻计算[J]. 电工技术学报, 2016, 31(11): 176-185. Deng Qijun, Liu Jiangtao, Chen Cheng, et al.High frequency resistance in Litz-wire planar rectangular solenoid coils for wireless power transfer[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 176-185.