通信基站普遍配有备电储能,且其大多数时间处于闲置状态。随着5G基站的加速建设,与之而来的大量备电储能对配电网来说将是十分可观的灵活性资源。为实现资源的充分利用,探究5G基站储能参与配电网灵活调控的潜力具有重要意义。在此背景下,本文提出一种计及5G基站储能协同的分布式储能(Distributed Energy Storage, DES)优化配置方法:首先,通过对5G基站的负荷特性及灵活储能容量进行分析,提出了含5G基站储能的配电网“规划-运行”双层优化模型。其中,规划层以网络年综合成本最小为目标,对DES进行选址定容;运行层以电压综合水平最优为目标,对DES与基站储能的调度策略进行寻优。为对该模型进行高效求解,提出了一种适用于大量异质变量的多目标动态评价优化算法,该算法通过对变量分组并在求解过程中自适应调整目标函数的选取,以加快求解速度、提高搜索精度。仿真结果证明了所提出的DES协同优化配置方法在降低成本和促进新能源消纳方面的有效性,以及所提出优化算法在兼顾多目标与快速求解方面的优越性。
Communication base stations (BSs) are normally equipped with backup energy storages, which are idle in most of the time. As the construction of 5G BSs is accelerating, their backup energy storages become prospective flexible resources to electrical distribution networks. To fully utilize these energy storage resources, it is of great significance to explore their capability in participating in the flexible dispatching of distribution networks. In this context and under the background of increasing penetrations of renewable generations, an optimal configuration method for distributed energy storage (DES) considering the coordinated operation of 5G BS energy storage is proposed, which improves the voltage profiles of distribution networks, facilitates the accommodation of renewable generations and minimizes the investment cost of DES.
Firstly, by analyzing the load characteristic and the flexible energy storage capacity of 5G BS, the model of 5G BS participating in distribution network operation is constructed. The charging/discharging cost of 5G BS energy storage is also analyzed. Next, the optimal configuration method for DES considering the coordinated operation of 5G BS energy storage is proposed. This method adopts a distribution network “planning-operating” two-layer model, where the planning layer aims to minimize the network annual cost by sitting and sizing DES, and the operating layer aims to optimize the network comprehensive voltage level by dispatching the DES and 5G BS energy storage. Considering such two-layer model contains massive and heterogenous decision variables, an optimization algorithm based on multi-objective dynamic assessment considering massive heterogenous variables (DA-H) is designed. The DA-H algorithm groups the decision variables according to their properties, and searches for the optima through divide-and-conquer. By assigning the membership function for each objective, dynamic assessments are performed to determine the fitness value of each solution during iterations. This aims to allocate more searching resources to the objective function that requires greater improvement, and the final optimal solution is an equilibrium one located on the Pareto frontier.
Finally, to validate the effectiveness and efficiency of the proposed method, case studies are carried out on the improved IEEE 33-bus system. Simulation results show that, by using the proposed DES configuration method, the network annual comprehensive cost equivalent to per day is 567.00 yuan, including 407.40 yuan of network power losses and 159.60 yuan of DES investment and operation costs. Compared with the case where 5G BS energy storage does not participate in network dispatching, the comprehensive cost decreases by 31.6%, where a decrease of 36.1% is achieved in DES investment and operation costs, and a decrease of 29.6% is achieved in network power losses. The costs of 5G BS before and after participating in distribution network dispatching is also compared, which demonstrates that 5G BS operators have sufficient willingness to get involved. To validate the advances of the proposed DA-H algorithm, its optimization performance is compared with improved multi-objective PSO algorithm and single-objective optimization. Results show that the DA-H algorithm achieves a balance among multiple voltage objectives. Although its performance along a single objective achieves a slight decrease, its performance along the other objectives are superior to the ones obtained in single-objective optimization. Additionally, the DA-H algorithm has advantages in solving speed and accuracy compared to other algorithms.
毕皓淳, 祁琪, 刘向军, 侯子豪, 艾欣. 计及5G基站运行协同的分布式储能优化配置方法[J]. 电工技术学报, 0, (): 9041-41.
Bi Haochun, Qi Qi, Liu Xiangjun, Hou Zihao, Ai Xin. An Optimal Configuration Method for DES Considering Coordinated Operation of 5G Base Station. Transactions of China Electrotechnical Society, 0, (): 9041-41.
[1] 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833.
Kang Chongqing, Du Ershun, Li Yaowang, et al.Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833.
[2] 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29): 4999-5008.
Zhou Xiaoxin, Lu Zongxiang, Liu Yingmei, et al.Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008.
[3] 潘郑楠, 邓长虹, 徐慧慧, 等. 考虑灵活性补偿的高比例风电与多元灵活性资源博弈优化调度[J]. 电工技术学报, 2023, 38(增刊1): 56-69.
Pan Zhengnan, Deng Changhong, Xu Huihui, et al.Game optimization scheduling of high proportion wind power and multiple flexible resources considering flexibility compensation[J]. Transactions of China Electrotechnical Society, 2023, 38(S1): 56-69.
[4] 李建林, 马会萌, 惠东. 储能技术融合分布式可再生能源的现状及发展趋势[J]. 电工技术学报, 2016, 31(14): 1-10, 20.
Li Jianlin, Ma Huimeng, Hui Dong.Present development condition and trends of energy storage technology in the integration of distributed renewable energy[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 1-10, 20.
[5] 代倩, 吴俊玲, 秦晓辉, 等. 提升局部区域新能源外送能力的储能容量优化配置方法[J]. 电力系统自动化, 2022, 46(3): 67-74.
Dai Qian, Wu Junling, Qin Xiaohui, et al.Optimal configuration method of energy storage capacity for improving delivery ability of renewable energy in regional area[J]. Automation of Electric Power Systems, 2022, 46(3): 67-74.
[6] 李相俊, 盛兴, 闫士杰, 等. 基于交替方向乘子法的超大规模储能系统分布式协同优化[J]. 电网技术, 2020, 44(5): 1681-1688.
Li Xiangjun, Sheng Xing, Yan Shijie, et al.Distributed cooperative optimization for ultra-large-scale storage system based on alternating direction multiplier method[J]. Power System Technology, 2020, 44(5): 1681-1688.
[7] 蔡福霖, 胡泽春, 曹敏健, 等. 提升新能源消纳能力的集中式与分布式电池储能协同规划[J]. 电力系统自动化, 2022, 46(20): 23-32.
Cai Fulin, Hu Zechun, Cao Minjian, et al.Coordinated planning of centralized and distributed battery energy storage for improving renewable energy accommodation capability[J]. Automation of Electric Power Systems, 2022, 46(20): 23-32.
[8] 张博, 唐巍, 蔡永翔, 等. 基于一致性算法的户用光伏逆变器和储能分布式控制策略[J]. 电力系统自动化, 2020, 44(2): 86-94.
Zhang Bo, Tang Wei, Cai Yongxiang, et al.Distributed control strategy of residential photovoltaic inverter and energy storage based on consensus algorithm[J]. Automation of Electric Power Systems, 2020, 44(2): 86-94.
[9] 杨子龙, 宋振浩, 潘静, 等. 分布式光伏/储能系统多运行模式协调控制策略[J]. 中国电机工程学报, 2019, 39(8): 2213-2220, 4.
Yang Zilong, Song Zhenhao, Pan Jing, et al.Multi-mode coordinated control strategy of distributed PV and energy storage system[J]. Proceedings of the CSEE, 2019, 39(8): 2213-2220, 4.
[10] 温春雪, 赵天赐, 于赓, 等. 基于改进粒子群算法的储能优化配置[J]. 电气技术, 2022, 23(10): 1-9, 58.
Wen Chunxue, Zhao Tianci, Yu Geng, et al.Optimization configuration of energy storage based on the improved particle swarm optimization[J]. Electrical Engineering, 2022, 23(10): 1-9, 58.
[11] 程林, 齐宁, 田立亭. 考虑运行控制策略的广义储能资源与分布式电源联合规划[J]. 电力系统自动化, 2019, 43(10): 27-35, 43.
Cheng Lin, Qi Ning, Tian Liting.Joint planning of generalized energy storage resource and distributed generator considering operation control strategy[J]. Automation of Electric Power Systems, 2019, 43(10): 27-35, 43.
[12] 李勇, 姚天宇, 乔学博, 等. 基于联合时序场景和源网荷协同的分布式光伏与储能优化配置[J]. 电工技术学报, 2022, 37(13): 3289-3303.
Li Yong, Yao Tianyu, Qiao Xuebo, et al.Optimal configuration of distributed photovoltaic and energy storage system based on joint sequential scenario and source-network-load coordination[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3289-3303.
[13] 黄志强, 陈业伟, 毛志鹏, 等. 柔性多状态开关与分布式储能系统联合接入规划[J]. 电力系统自动化, 2022, 46(14): 29-37.
Huang Zhiqiang, Chen Yewei, Mao Zhipeng, et al.Joint access planning of soft open point and distributed energy storage system[J]. Automation of Electric Power Systems, 2022, 46(14): 29-37.
[14] GSMA.中国5G垂直行业应用案例2022[EB/OL].[2022-03-28]https://www.gsma.com/greater-china/resources/5g-in-verticals-in-china-2022-cn/
[15] 张涌. 通信运营商的碳达峰、碳中和之路探讨[J]. 邮电设计技术, 2021(6): 1-4.
Zhang Yong.Discussion on road of carbon peak and carbon neutralization for communication operators[J]. Designing Techniques of Posts and Telecommunications, 2021(6): 1-4.
[16] 麻秀范, 孟祥玉, 朱秋萍, 等. 计及通信负载的5G基站储能调控策略[J]. 电工技术学报, 2022, 37(11): 2878-2887.
Ma Xiufan, Meng Xiangyu, Zhu Qiuping, et al.Control strategy of 5G base station energy storage considering communication load[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2878-2887.
[17] Huang Xueqing, Han Tao, Ansari N.Smart grid enabled mobile networks: jointly optimizing BS operation and power distribution[J]. IEEE/ACM Transactions on Networking, 2017, 25(3): 1832-1845.
[18] Labidi W, Chahed T, Elayoubi S E.Optimal battery management strategies in mobile networks powered by a smart grid[J]. IEEE Transactions on Green Communications and Networking, 2018, 2(3): 859-867.
[19] 曾博, 穆宏伟, 董厚琦, 等. 考虑5G基站低碳赋能的主动配电网优化运行[J]. 上海交通大学学报, 2022, 56(3): 279-292.
Zeng Bo, Mu Hongwei, Dong Houqi, et al.Optimization of active distribution network operation considering decarbonization endowment from 5G base stations[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 279-292.
[20] Renga D, Al Haj Hassan H, Meo M, et al. Energy management and base station on/off switching in green mobile networks for offering ancillary services[J]. IEEE Transactions on Green Communications and Networking, 2018, 2(3): 868-880.
[21] Al Haj Hassan H, Renga D, Meo M, et al. A novel energy model for renewable energy-enabled cellular networks providing ancillary services to the smart grid[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(2): 381-396.
[22] Yong Pei, Zhang Ning, Hou Qingchun, et al.Evaluating the dispatchable capacity of base station backup batteries in distribution networks[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 3966-3979.
[23] 麻秀范, 冯晓瑜. 考虑5G网络用电需求及可靠性的变电站双Q规划法[J]. 电工技术学报, 2023, 38(11): 2962-2976.
Ma Xiufan, Feng Xiaoyu.Double Q planning method for substation considering power demand of 5G network and reliability[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 2962-2976.
[24] 中华人民共和国住房和城乡建设部. GB 51194—2016 通信电源设备安装工程设计规范[S]. 北京: 中国计划出版社, 2017.
[25] 李俊双, 胡炎, 邰能灵. 计及通信负载与供电可靠性的5G基站储能与配电网协同优化调度[J]. 上海交通大学学报, 2023, 57(7): 791-802.
Li Junshuang, Hu Yan, Tai Nengling.Collaborative optimization scheduling of 5G base station energy storage and distribution network considering communication load and power supply reliability[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 791-802.
[26] 王凯亮, 孔慧超, 李俊辉, 等. 考虑配电网可靠性的储能系统选址定容优化[J]. 南方电网技术, 2022, 16(4): 21-29.
Wang Kailiang, Kong Huichao, Li Junhui, et al.Optimization of energy storage system location and capacity considering the reliability of distribution network[J]. Southern Power System Technology, 2022, 16(4): 21-29.
reliability[J]. Southern Power Grid Technology, 2022, 16(04): 21-29. DOI: 10.13648/j.cnki.issn1674-0629.2022.04.003
[27] 王晓卫, 康乾坤, 梁振锋, 等. 考虑5G基站储能参与配网供电恢复研究[J/OL]. 电工技术学报, 2023: 1-18. (2023-05-18). https://kns.cnki.net/kcms/detail/11.2188.TM.20230518.1116.004.html.
Wang Xiaowei, Kang Qiankun, Liang Zhenfeng, et al. Distribution network restoration supply method considers 5G base station energy storage participation[J/OL]. Transactions of China Electrotechnical Society, 2023: 1-18. (2023-05-18). https://kns.cnki.net/kcms/detail/11.2188.TM.20230518.1116.004.html.
[28] 周宸宇, 冯成, 王毅. 基于移动用户接入控制的5G通信基站需求响应[J]. 中国电机工程学报, 2021, 41(16): 5452-5462.
Zhou Chenyu, Feng Cheng, Wang Yi.Demand response of 5G communication base stations based on admission control of mobile users[J]. Proceedings of the CSEE, 2021, 41(16): 5452-5462.
[29] 吴盛军, 李群, 刘建坤, 等. 基于储能电站服务的冷热电多微网系统双层优化配置[J]. 电网技术, 2021, 45(10): 3822-3832.
Wu Shengjun, Li Qun, Liu Jiankun, et al.Bi-level optimal configuration for combined cooling heating and power multi-microgrids based on energy storage station service[J]. Power System Technology, 2021, 45(10): 3822-3832.
[30] 吴小刚, 刘宗歧, 田立亭, 等. 基于改进多目标粒子群算法的配电网储能选址定容[J]. 电网技术, 2014, 38(12): 3405-3411.
Wu Xiaogang, Liu Zongqi, Tian Liting, et al.Energy storage device locating and sizing for distribution network based on improved multi-objective particle swarm optimizer[J]. Power System Technology, 2014, 38(12): 3405-3411.