The Optimal Configuration of Energy Storage in the Source-Grid-Load-Storage Integrated System Considering Frequency Stability Constraints in 100% New Energy Scenarios
Zhao Dongmei, Song Chenming, Feng Xiangyang, Yu Chengchao, Xu Chenyu
School of Electrical and Electronic Engineering North China Electric Power University Beijing 102206 China
Abstract:It is an effective means to promote large-scale local consumption of new energy to construct an integrated source-grid-load-storage system in areas with abundant new energy and concentrated loads. However, the frequency stability problem is becoming increasingly prominent due to the lack of conventional power supply inertia support in the 100% new energy scenario. To address these issues, the potential of frequency modulation resources on the source, energy storage and load sides is fully explored in this paper, establishing an integrated system energy storage optimization configuration model considering frequency stability and the coordinated operation of various frequency modulation resources, realizing the coordinated operation of flexible adjustment resources and ensuring the frequency stability of the system. Firstly, the virtual inertia time constant is reasonably set according to the actual operating state of the system and the expected fault scenario, which is based on the safety constraint of rate of change of frequency. Secondly, the influence of the control strategy and demand-side response on the frequency response of grid forming (GFM) and grid following (GFL) were explored, which improves the frequency regulation ability of new energy stations in all aspects. Finally, a frequency response model considering the dynamic frequency response constraints and the operation characteristics of frequency modulation resources in each link of the integrated system is established, so as to effectively avoid the frequency out-of-limit problem. Simulation analysis of the proposed optimal configuration model for energy storage has a positive effect on improving the inertia level of the system and ensuring the frequency stability of the system. The frequency safety of the power system can be improved while improving economic benefits considering the frequency characteristics of new energy units, energy storage power stations and demand-side response under the framework of energy storage allocation optimization. The rotor kinetic energy stored in the wind turbine and the fast frequency response of the energy storage power station are used to provide inertia support for the system. Compared with the existing research, the proposed configuration method can effectively ensure that the frequency security and stability indicators are within the stability threshold. The system composed entirely of GFM will affect the participation of the demand-side response resulting in a 14.3% increase in the energy storage configuration power of the system. Additionally, it can reduce the planned energy storage power by up to 23.8% setting reasonable demand-side response control parameters. Simulation analysis of the proposed configuration model of energy storage considering frequency stability constraints shows that the following conclusions: (1) Virtual synchronous generators technology is introduced into the new energy station to provide virtual inertia support for the integrated system. According to the actual operating conditions and expected fault scenarios, the virtual inertia time constants of the wind farm and the energy storage power station are designed. (2) The GFM control can effectively reduce . However, it will affect the participation of demand-side response when the number of network-based stations is higher than a certain percentage. (3) The analysis of the demand side response will affect the energy storage configuration, and the case analysis shows that on the basis of ensuring user satisfaction, setting reasonable demand side response control parameters can effectively reduce the energy storage configuration cost of the integrated system.
赵冬梅, 宋晨铭, 冯向阳, 虞程超, 徐辰宇. 100%新能源场景下考虑频率稳定约束的源网荷储一体化系统储能优化配置[J]. 电工技术学报, 2025, 40(7): 2146-2161.
Zhao Dongmei, Song Chenming, Feng Xiangyang, Yu Chengchao, Xu Chenyu. The Optimal Configuration of Energy Storage in the Source-Grid-Load-Storage Integrated System Considering Frequency Stability Constraints in 100% New Energy Scenarios. Transactions of China Electrotechnical Society, 2025, 40(7): 2146-2161.
[1] 孙惠, 翟海保, 吴鑫. 源网荷储多元协调控制系统的研究及应用[J]. 电工技术学报, 2021, 36(15): 3264-3271. Sun Hui, Zhai Haibao, Wu Xin.Research and application of multi-energy coordinated control of generation, network, load and storage[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3264-3271. [2] 葛晓琳, 刘亚, 符杨, 等. 考虑惯量支撑及频率调节全过程的分布鲁棒机组组合[J]. 中国电机工程学报, 2021, 41(12): 4043-4058. Ge Xiaolin, Liu Ya, Fu Yang, et al.Distributed robust unit commitment considering the whole process of inertia support and frequency regulations[J]. Procee-dings of the CSEE, 2021, 41(12): 4043-4058. [3] 赵冬梅, 徐辰宇, 陶然, 等. 多元分布式储能在新型电力系统配电侧的灵活调控研究综述[J]. 中国电机工程学报, 2023, 43(5): 1776-1799. Zhao Dongmei, Xu Chenyu, Tao Ran, et al.Review on flexible regulation of multiple distributed energy storage in distribution side of new power system[J]. Proceedings of the CSEE, 2023, 43(5): 1776-1799. [4] 张智, 周明, 武昭原, 等. 考虑动态频率支撑的储能选址定容规划方法[J]. 中国电机工程学报, 2023, 43(7): 2708-2721. Zhang Zhi, Zhou Ming, Wu Zhaoyuan, et al.Energy storage location and capacity planning method considering dynamic frequency support[J]. Proceedings of the CSEE, 2023, 43(7): 2708-2721. [5] 滕贤亮, 谈超, 昌力, 等. 高比例新能源电力系统有功功率与频率控制研究综述及展望[J]. 电力系统自动化, 2023, 47(15): 12-35. Teng Xianliang, Tan Chao, Chang Li, et al.Review and prospect of research on active power and frequency control in power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2023, 47(15): 12-35. [6] 李欣然, 崔曦文, 黄际元, 等. 电池储能电源参与电网一次调频的自适应控制策略[J]. 电工技术学报, 2019, 34(18): 3897-3908. Li Xinran, Cui Xiwen, Huang Jiyuan, et al.The self-adaption control strategy of energy storage batteries participating in the primary frequency regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3897-3908. [7] 张祥宇, 胡剑峰, 付媛, 等. 风储联合系统的虚拟惯量需求与协同支撑[J]. 电工技术学报, 2024, 39(3): 672-685. Zhang Xiangyu, Hu Jianfeng, Fu Yuan, et al.Virtual inertia demand and collaborative support of wind power and energy storage system[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 672-685. [8] 曹炜, 钦焕乘, 陆建忠, 等. 新型电力系统下虚拟同步机的定位和应用前景展望[J]. 电力系统自动化, 2023, 47(4): 190-207. Cao Wei, Qin Huancheng, Lu Jianzhong, et al.Orientation and application prospect of virtual synchronous generator in new power system[J]. Automation of Electric Power Systems, 2023, 47(4): 190-207. [9] 张崇, 李博, 李笑宇, 等. 基于虚拟同步机控制参数自适应调节的储能系统调频方法[J]. 发电技术, 2024, 45(4): 772-780. Zhang Chong, Li Bo, Li Xiaoyu, et al.A frequency regulation method of energy storage system based on adaptive adjustment of virtual synchronous generator control parameters[J]. Power Generation Technology, 2024, 45(4): 772-780. [10] Kheshti M, Lin Shuyue, Zhao Xiaowei, et al.Gaussian distribution-based inertial control of wind turbine generators for fast frequency response in low inertia systems[J]. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1641-1653. [11] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225-232. Zhang Guanfeng, Yang Junyou, Sun Feng, et al.Primary frequency regulation strategy of DFIG based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 225-232. [12] 赵冬梅, 徐辰宇, 杜泽航, 等. 就地无常规电源支撑下考虑新能源基地频率稳定的储能优化配置方法[J]. 中国电机工程学报, 2024, 44(24): 9691-9706. Zhao Dongmei, Xu Chenyu, Du Zehang, et al.Optimization configuration Method for Energy storage considering frequency stability of new energy bases without conventional power supply support on site[J]. Proceedings of the CSEE, 2024, 44(24): 9691-9706. [13] 赵波, 李得民, 吴在军, 等. 基于100%绿色能源供电目标的海岛微电网群容量优化配置[J]. 中国电机工程学报, 2021, 41(3): 932-945. Zhao Bo, Li Demin, Wu Zaijun, et al.Capacity optimal sizing of island microgrid clusters based on the target of 100% green energy power supply[J]. Proceedings of the CSEE, 2021, 41(3): 932-945. [14] Tian Guanyu, Sun Qunzhou.A stochastic controller for primary frequency regulation using on/off demand side resources[J]. IEEE Transactions on Smart Grid, 2023, 14(5): 4141-4144. [15] Cetinkaya U, Bayindir R.Impact of increasing renewable energy sources on power system stability and determine optimum demand response capacity for frequency control[C]//2022 10th International Conference on Smart Grid, Istanbul, Turkey, 2022: 396-400. [16] 杨森, 杜文娟, 王旭斌, 等. 风火-需求侧响应协调频率控制方法[J]. 电网技术, 2017, 41(3): 845-853. Yang Sen, Du Wenjuan, Wang Xubin, et al.Coordinated frequency control method of wind/ thermal/demand response[J]. Power System Technology, 2017, 41(3): 845-853. [17] 王宝财, 孙华东, 李文锋, 等. 考虑动态频率约束的电力系统最小惯量评估[J]. 中国电机工程学报, 2022, 42(1): 114-127. Wang Baocai, Sun Huadong, Li Wenfeng, et al.Minimum inertia estimation of power system considering dynamic frequency constraints[J]. Proceedings of the CSEE, 2022, 42(1): 114-127. [18] Chu Zhongda, Zhang Ning, Teng Fei.Frequency-constrained resilient scheduling of microgrid: a distributionally robust approach[J]. IEEE Transactions on Smart Grid, 2021, 12(6): 4914-4925. [19] 周海强, 鲁锦文, 薛峰, 等. 计及风电综合惯性控制的电力系统扩展频率响应模型[J]. 电力系统自动化, 2023, 47(8): 198-205. Zhou Haiqiang, Lu Jinwen, Xue Feng, et al.Extended frequency response model for power system considering wind power synthetic inertia control[J]. Automation of Electric Power Systems, 2023, 47(8): 198-205. [20] 文云峰, 林晓煌. 孤岛与并网模式下微电网最低惯量需求评估[J]. 中国电机工程学报, 2021, 41(6): 2040-2053. Wen Yunfeng, Lin Xiaohuang.Minimum inertia requirement assessment of microgrids in islanded and grid-connected modes[J]. Proceedings of the CSEE, 2021, 41(6): 2040-2053. [21] 聂永辉, 刘家僮, 孙斌, 等. 基于转子动能释放的风电并网系统非线性频率控制策略研究[J]. 中国电机工程学报, 2023, 43(23): 9127-9136. Nie Yonghui, Liu Jiatong, Sun Bin, et al.Research on nonlinear frequency control strategy of wind power grid connected system based on rotor kinetic energy release[J]. Proceedings of the CSEE, 2023, 43(23): 9127-9136. [22] 国家市场监督管理总局, 中国国家标准化管理委员会. 风电场接入电力系统技术规定第1部分:陆上风电: GB/T 19963.1—2021[S]. 北京: 中国标准出版社, 2021. [23] 王科, 秦文萍, 张宇, 等. 双馈风机等效惯量控制比例系数对系统功角首摆稳定的影响机理分析[J]. 电工技术学报, 2023, 38(3): 741-753. Wang Ke, Qin Wenping, Zhang Yu, et al.Mechanism analysis of effect of equivalent proportional coefficient of inertia control of DFIG on stability of first swing of power angle[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 741-753. [24] Nakiganda A M, Dehghan S, Markovic U, et al.A stochastic-robust approach for resilient microgrid investment planning under static and transient islanding security constraints[J]. IEEE Transactions on Smart Grid, 2022, 13(3): 1774-1788. [25] 国家市场监督管理总局, 中国国家标准化管理委员会. 电化学储能系统接入电网技术规定: GB/T 36547—2018[S]. 北京: 中国标准出版社, 2019. [26] 刘钊汛, 秦亮, 杨诗琦, 等. 面向新型电力系统的电力电子变流器虚拟同步控制方法评述[J]. 电网技术, 2023, 47(1): 1-16. Liu Zhaoxun, Qin Liang, Yang Shiqi, et al.Review on virtual synchronous generator control technology of power electronic converter in power system based on new energy[J]. Power System Technology, 2023, 47(1): 1-16. [27] 余光正, 胡越, 刘晨曦, 等. 含跟网/构网型混联多馈入系统协调优化配置方法研究[J/OL]. 中国电机工程学报, 2023: 1-15. http://kns.cnki.net/kcms/detail/11.2107.tm.20231220.1539.010.html. Yu Guangzheng, Hu Yue, Liu Chenxi, et al. Research on the coordinated optimization configuration method for hybrid multi-infeed systems with grid-following or grid-forming[J/OL]. Proceedings of the CSEE, 2023: 1-15.http://kns.cnki.net/kcms/detail/11.2107.tm.20231220.1539.010.html. [28] 葛俊, 宋鹏, 刘汉民, 等. 新能源场站虚拟同步发电机技术研究及示范应用[J]. 全球能源互联网, 2018, 1(1): 39-47. Ge Jun, Song Peng, Liu Hanmin, et al.Research and demonstration application of virtual synchronous generator technology in renewable energy power station[J]. Journal of Global Energy Interconnection, 2018, 1(1): 39-47. [29] Zhang Haobo, Xiang Wang, Lin Weixing, et al.Grid forming converters in renewable energy sources dominated power grid: control strategy, stability, application, and challenges[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9(6): 1239-1256. [30] Pan Donghua, Wang Xiongfei, Liu Fangcheng, et al.Transient stability of voltage-source converters with grid-forming control: a design-oriented study[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1019-1033. [31] 颜湘武, 王德胜, 杨琳琳, 等. 直驱风机惯量支撑与一次调频协调控制策略[J]. 电工技术学报, 2021, 36(15): 3282-3292. Yan Xiangwu, Wang Desheng, Yang Linlin, et al.Coordinated control strategy of inertia support and primary frequency regulation of PMSG[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3282-3292. [32] 谢震, 杨曙昕, 代鹏程, 等. 构网型全功率风电机组网侧变流器耦合分析及抑制策略[J]. 电工技术学报, 2023, 38(14): 3745-3758, 3768. Xie Zhen, Yang Shuxin, Dai Pengcheng, et al.Grid-side coupling analysis and suppression strategy of grid-forming full-power wind turbines[J]. Transactions of China Electrotechnical Society, 2023, 38(14): 3745-3758, 3768. [33] 梁紫雯, 牟龙华, 何楚璇. 微能源网互联系统的频率调节和消纳能力研究[J]. 电工技术学报, 2022, 37(增刊1): 74-82. Liang Ziwen, Mu Longhua, He Chuxuan.Research on frequency modulation and accommodation capability of interconnected system of micro-energy network[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 74-82.