Abstract:Low frequency transmission technology enhances the transmission distance and capacity by reducing the transmission frequency, which is a new type of transmission technology taking into account the advantages of traditional AC and DC transmission, and has a good application prospect in the scenarios of medium and distant sea wind power transmission, new energy pooling and urban flexible interconnection. Flexible low frequency transmission system is double-ended power electronics systems, when the low frequency transmission line occurs asymmetrical faults, M3C (modular multilevel matrix converter) will use the fault control strategy to achieve the corresponding control objectives, and the characteristics of the fault current will be affected by the control strategy, which in turn affects the performance of the traditional line protection. For this reason, this paper proposes a current differential protection performance improvement scheme for flexible low frequency transmission system based on control and protection synergy, which improves the action performance of current differential protection by actively regulating the magnitude of negative sequence current in the line through the M3C. First, according to the power relationship during the asymmetrical fault on the low frequency side, the bridge arm active power imbalance component is theoretically deduced, the reasons for the M3C capacitor voltage imbalance are analysed, and for the problem that capacitor voltage balance through negative sequence current control limits the degree of freedom of the M3C negative sequence currents, a capacitor voltage balance strategy based on the M3C circulating current control is adopted, which realises the M3C capacitor voltage balance control with the mutual decoupling of negative sequence current control. Secondly, based on the action characteristics of the current differential protection, the influence of negative sequence current on the action performance of the current differential protection is analysed, and it is pointed out that the action performance of the current differential protection can be changed by regulating the negative sequence current in the line through the M3C to change the relationship between the action amount and the restraint amount. Finally, with the goal of improving the operational performance of the differential current protection, and under the constraint of ensuring that the M3C bridge arm doesn't overcurrent, the reference value of negative sequence current is theoretically calculated and selected. In the simulation analysis, this paper establishes a flexible low frequency transmission system simulation model, through a large number of simulation experiments, in order to verify the feasibility and effectiveness of the proposed scheme. The simulation results in this paper show that: (1) The capacitor voltage balance strategy based on M3C circulating current control adopted in this paper is able to achieve the capacitor voltage balance of M3C during asymmetrical faults. (2) The negative sequence current reference value selected in this paper can ensure that the line fault current does not exceed the safe range and avoid the overcurrent problem of M3C bridge arm. (3) By comparing the action performance of current differential protection under different negative sequence currents, it is verified that the negative sequence current reference value selected in this paper effectively improves the action performance of current differential protection, and makes the current differential protection act correctly under various fault conditions.
郑涛, 康恒. 基于控保协同的柔性低频输电系统电流差动保护性能提升方案[J]. 电工技术学报, 2025, 40(7): 2162-2177.
Zheng Tao, Kang Heng. Improvement of Current Differential Protection Performance of Flexible Low-Frequency Transmission System Based on Control and Protection Cooperation. Transactions of China Electrotechnical Society, 2025, 40(7): 2162-2177.
[1] 王锡凡, 王秀丽, 滕予非. 分频输电系统及其应用[J]. 中国电机工程学报, 2012, 32(13): 1-6, 184. Wang Xifan, Wang Xiuli, Teng Yufei.Fractional frequency transmission system and its applications[J]. Proceedings of the CSEE, 2012, 32(13): 1-6, 184. [2] 黄明煌, 王秀丽, 刘沈全, 等. 分频输电应用于深远海风电并网的技术经济性分析[J]. 电力系统自动化, 2019, 43(5): 167-174. Huang Minghuang, Wang Xiuli, Liu Shenquan, et al.Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm[J]. Automation of Electric Power Systems, 2019, 43(5): 167-174. [3] 李钢, 田杰, 王仙荣, 等. 远海风电送出技术应用现状及发展趋势[J]. 供用电, 2022, 39(11): 2-10. Li Gang, Tian Jie, Wang Xianrong, et al.Application status and development trend of offshore wind power transmission technology[J]. Distribution & Utilization, 2022, 39(11): 2-10. [4] 赵国亮, 陈维江, 邓占锋, 等. 柔性低频交流输电关键技术及应用[J]. 电力系统自动化, 2022, 46(15): 1-10. Zhao Guoliang, Chen Weijiang, Deng Zhanfeng, et al.Key technologies and application of flexible low-frequency AC transmission[J]. Automation of Electric Power Systems, 2022, 46(15): 1-10. [5] 林进钿, 倪晓军, 裘鹏. 柔性低频交流输电技术研究综述[J]. 浙江电力, 2021, 40(10): 42-50. Lin Jintian, Ni Xiaojun, Qiu Peng.Review of flexible low-frequency AC transmission technology[J]. Zhejiang Electric Power, 2021, 40(10): 42-50. [6] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34(31): 5459-5466. Wang Xifan, Wei Xiaohui, Ning Lianhui, et al.Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31): 5459-5466. [7] 李浩, 裴翔羽, 李泽文, 等. 具备故障电流限制能力的多端口直流断路器[J]. 电工技术学报, 2023, 38(10): 2818-2831. Li Hao, Pei Xiangyu, Li Zewen, et al.A multi-port DC circuit breaker with fault-current limiting capability[J]. Transactions of China Electrotechnical Society, 2023, 38(10): 2818-2831. [8] 束洪春, 邵宗学, 旷宇. 基于改进型限流混合式直流断路器的开断时序优化研究[J]. 电工技术学报, 2023, 38(22): 6176-6187. Shu Hongchun, Shao Zongxue, Kuang Yu.Research of opening timing optimization based on improved current-limiting hybrid DC circuit breaker[J]. Tran-sactions of China Electrotechnical Society, 2023, 38(22): 6176-6187. [9] 朱海, 郝亮亮, 和敬涵, 等. HVDC送端交流系统故障引起换相失败的机理分析[J]. 电工技术学报, 2023, 38(16): 4465-4478. Zhu Hai, Hao Liangliang, He Jinghan, et al.Mechanism analysis of commutation failure caused by fault of HVDC sending end AC system[J]. Tran-sactions of China Electrotechnical Society, 2023, 38(16): 4465-4478. [10] 王秀丽, 赵勃扬, 黄明煌, 等. 大规模深远海风电送出方式比较及集成设计关键技术研究[J]. 全球能源互联网, 2019, 2(2): 138-145. Wang Xiuli, Zhao Boyang, Huang Minghuang, et al.Research of integration methods comparison and key design technologies for large scale long distance offshore wind power[J]. Journal of Global Energy Interconnection, 2019, 2(2): 138-145. [11] Tang Yingjie, Zhang Zheren, Xu Zheng.DRU based low frequency AC transmission scheme for offshore wind farm integration[J]. IEEE Transactions on Sustainable Energy, 2021, 12(3): 1512-1524. [12] 段子越, 孟永庆, 宁联辉, 等. 柔性分频输电系统的构建规划及关键设备技术综述[J]. 电力系统自动化, 2023, 47(10): 205-215. Duan Ziyue, Meng Yongqing, Ning Lianhui, et al.Review on construction planning and key equipment technology of flexible fractional frequency tran-smission system[J]. Automation of Electric Power Systems, 2023, 47(10): 205-215. [13] 段子越, 孟永庆, 宋博阳, 等. 基于模块化多电平矩阵换流器的柔性低频输电系统大信号稳定性分析[J]. 高电压技术, 2023, 49(9): 3745-3756. Duan Ziyue, Meng Yongqing, Song Boyang, et al.Large signal stability analysis of flexible low frequency transmission system based on modular multilevel matrix converter[J]. High Voltage Engineering, 2023, 49(9): 3745-3756. [14] 王秀丽, 张海涛, 周嘉豪, 等. 远距离风电分频送出方式及大功率变频装置的研发[J]. 高电压技术, 2024, 50(5): 1978-1986. Wang Xiuli, Zhang Haitao, Zhou Jiahao, et al.Frequency converter development of fractional frequency transmission system in long-distance wind power integration[J]. High Voltage Engineering, 2024, 50(5): 1978-1986. [15] Kammerer F, Kolb J, Braun M.A novel cascaded vector control scheme for the modular multilevel matrix converter[C]//IECON 2011-37th Annual Con-ference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, 2011: 1097-1102. [16] Kawamura W, Akagi H.Control of the modular multilevel cascade converter based on triple-star bridge-cells (MMCC-TSBC) for motor drives[C]// 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 2012: 3506-3513. [17] Shang Shuonan, Meng Yongqing, Wang Jian, et al.Research on modeling and control strategy of modular multilevel matrix converter supplying passive networks[C]//2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an, 2016: 1974-1978. [18] 刘士利, 罗英楠, 刘宗烨, 等. 饱和多孔介质对流特性对高压交流海底电缆载流性能的影响[J]. 电工技术学报, 2023, 38(4): 1023-1031. Liu Shili, Luo Yingnan, Liu Zongye, et al.The influence of convective characteristics of saturated porous media on ampacity performance of submarine cable[J]. Transactions of China Electrotechnical Society, 2023, 38(4): 1023-1031. [19] Yu Zheyang, Zhang Zheren, Xu Zheng.Electromechanical transient modeling of the low-frequency AC system with modular multilevel matrix converter stations[J]. IEEE Transactions on Power Systems, 2024, 39(1): 921-933. [20] 盛景, 陈聪, 向鑫, 等. 模块化多电平谐振变换器多自由度调压控制及子模块电容均压方法[J]. 电工技术学报, 2022, 37(24): 6216-6229. Sheng Jing, Chen Cong, Xiang Xin, et al.Multiple-degree-of-freedom control and capacitor voltage balancing method of modular multilevel resonant converter[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6216-6229. [21] Liu Shenquan, Wang Xifan, Wang Biyang, et al.Comparison between back-to-back MMC and M3C as high power AC/AC converters[C]//2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an, China, 2016: 671-676. [22] Kawamura W, Hagiwara M, Akagi H.Control and experiment of a modular multilevel cascade converter based on triple-star bridge cells[J]. IEEE Transactions on Industry Applications, 2014, 50(5): 3536-3548. [23] Liu Shenquan, Wang Xifan, Meng Yongqing, et al.A decoupled control strategy of modular multilevel matrix converter for fractional frequency transmission system[J]. IEEE Transactions on Power Delivery, 2017, 32(4): 2111-2121. [24] 程启明, 谢怡群, 马信乔, 等. 不平衡电网模块化多电平矩阵换流器的控制策略[J]. 高电压技术, 2023, 49(5): 1975-1984. Cheng Qiming, Xie Yiqun, Ma Xinqiao, et al.Control strategy of modular multilevel matrix converter under unbalanced grid conditions[J]. High Voltage Engine-ering, 2023, 49(5): 1975-1984. [25] 郑涛, 宋伟男, 吕文轩. 基于M3C的低频输电系统不对称故障穿越控制策略[J]. 电力系统保护与控制, 2023, 51(8): 107-117. Zheng Tao, Song Weinan, Lü Wenxuan.Asymmetric fault ride-through control strategy for a low frequency AC transmission system based on a modular multi-level matrix converter[J]. Power System Protec-tion and Control, 2023, 51(8): 107-117. [26] 高校平, 张晨浩, 宋国兵, 等. 海上风电低频输电系统低频侧不对称故障控制策略[J]. 电力自动化设备, 2023, 43(10): 160-166. Gao Xiaoping, Zhang Chenhao, Song Guobing, et al.Control strategies of offshore wind power low frequency transmission system under asymmetric fault of low-frequency side[J]. Electric Power Automation Equipment, 2023, 43(10): 160-166. [27] Liu Yuchao, Li Guoqing, Wang He, et al.Research on AC line distance relay in the presence of modular multilevel converter based HVDC[C]//2016 IEEE PES Asia-Pacific Power and Energy Engineering Con-ference (APPEEC), Xi’an, China, 2016: 1622-1626. [28] Shi Lei, Adam G P, Li Rui, et al.Control of offshore MMC during asymmetric offshore AC faults for wind power transmission[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1074-1083. [29] 郑黎明, 贾科, 毕天姝, 等. 海上风电接入柔直系统交流侧故障特征及对保护的影响分析[J]. 电力系统保护与控制, 2021, 49(20): 20-32. Zheng Liming, Jia Ke, Bi Tianshu, et al.AC-side fault analysis of a VSC-HVDC transmission system connected to offshore wind farms and the impact on protection[J]. Power System Protection and Control, 2021, 49(20): 20-32. [30] 郑涛, 康恒, 宋伟男. 可实现低频输电系统不对称故障穿越的M3C电容电压均衡控制策略[J]. 电力系统保护与控制, 2023, 51(23): 130-140. Zheng Tao, Kang Heng, Song Weinan.Asymmetric fault ride-through control strategy for low-frequency transmission systems realizing the capacitor voltage balance of modular multilevel matrix converters[J]. Power System Protection and Control, 2023, 51(23): 130-140. [31] 赵勃扬, 王锡凡, 宁联辉, 等. 分频海上风电系统的不对称故障穿越控制[J]. 中国电机工程学报, 2023, 43(12): 4589-4599. Zhao Boyang, Wang Xifan, Ning Lianhui, et al.Ride-through control of fractional frequency offshore wind power system during unsymmetrical grid faults[J]. Proceedings of the CSEE, 2023, 43(12): 4589-4599. [32] 张建坡, 李耐心, 田新成. 电网电压不平衡条件下模块化多电平换流器高压直流输电控制策略[J]. 电工技术学报, 2016, 31(22): 205-212. Zhang Jianpo, Li Naixin, Tian Xincheng.The control strategies of modular multilevel converter-high voltage direct current transmission under unbalanced grid voltage conditions[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 205-212. [33] 顾乔根, 张晓宇, 吕航, 等. 基于故障负序分量的低频变压器快速差动保护[J]. 电力系统自动化, 2023, 47(7): 184-192. Gu Qiaogen, Zhang Xiaoyu, Lü Hang, et al.Fast differential protection of low-frequency transformer based on fault negative sequence component[J]. Automation of Electric Power Systems, 2023, 47(7): 184-192.