Abstract:The increasing penetration of large-scale distributed energy resources(DER) in micro-grid will bring a new challenge that the power electronic converter based distributed energy resources has no contribution to the micro-grid inertia. As an approach to making distributed energy resources including energy storage devices with virtual inertia, the virtual synchronous generator control strategy plays a significant role in the micro-grid frequency stability. On the basis of theoretical derivation and analysis of virtual synchronous generator control and microgrid, an overall virtual synchronous generator control strategy of distributed energy resources inverter is proposed to improve the frequency stability of microgrid. The outside control of distributed inverter is constructed by using synchronous generator’s rotor motion equation, primary frequency regulation feature and the delay characteristic of reactive power regulation. And the bottom control is adopted by the grid-connected vector relationship of synchronous generator. Finally, a simple micro-grid digital simulation system based on Matlab/Simulink and physical experiment platform are built, and the results show that the proposed virtual synchronous generator control method has an important effect on supporting the frequency stability of microgrid.
孟建辉,石新春,王毅,付超,李鹏. 改善微电网频率稳定性的分布式逆变电源控制策略[J]. 电工技术学报, 2015, 30(4): 70-79.
Meng Jianhui,Shi Xinchun,Wang Yi,Fu Chao,Li Peng. Control Strategy of DER Inverter for Improving Frequency Stability of Microgrid. Transactions of China Electrotechnical Society, 2015, 30(4): 70-79.
[1] Solangi K H, Islam M R, Saidur R, et al. A review on global solar energy policy[J]. Renewable and Sustainable Energy Reviews, 2011, 15(4): 2149-2163. [2] Tan W S, Hassan M Y, Majid M S, et al. Optimal distributed renewable generation planning: A review of different approaches[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 626-645. [3] 李霞林, 郭力, 王成山. 微网主从控制模式下的稳定性分析[J]. 电工技术学报, 2014, 29(2): 24-34. Li Xialin, Guo Li, Wang Chengshan. Stability analysis in a master-slave control based microgrid[J]. Transac- tions of China Electrotechnical Society, 2014, 29(2): 24-34. [4] 王成山, 武震, 李鹏. 微电网关键技术研究[J]. 电工技术学报, 2014, 29(2): 1-12. Wang Chengshan, Wu Zhen, Li Peng. Research on key technologies of microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 1-12. [5] 沈沉, 吴翔宇, 王志文, 等. 微电网实践与发展思考[J]. 电力系统保护与控制, 2014, 42(5): 1-11. Shen Chen, Wu Xiangyu, Wang Zhiwen, et al. Practice and rethinking of microgrids[J]. Power System Protec- tion and Control, 2014, 42(5): 1-11. [6] 周林, 黄勇, 郭珂, 等. 微电网储能技术研究综述[J]. 电力系统保护与控制, 2011, 39(7): 147-152. Zhou Lin, Huang Yong, Guo Ke, et al. A survey of energy storage technology for micro grid[J]. Power System Protection and Control, 2011, 39(7): 147-152. [7] Hatziargyriou N, Asano H, Iravani R, et al. Micro- grids[J]. IEEE Power and Energy Magazine, 2007, 5(4): 78-94. [8] 张建华, 于雷, 刘念, 等. 含风/光/柴/蓄及海水淡化负荷的微电网容量优化配置[J]. 电工技术学报, 2014, 29(2): 102-112. Zhang Jianhua, Yu Lei, Liu Nian, et al. Capacity configuration optimization for island microgrid with wind/photovoltaic/diesel/storage and seawater desalina- tion load[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 102-112. [9] 曾正, 赵荣祥, 汤胜清, 等. 可再生能源分散接入用先进并网逆变器研究综述[J]. 中国电机工程学报, 2013, 33(24): 1-12. Zeng Zheng, Zhao Rongxiang, Tang Shengqing, et al. An overview on advanced grid-connected inverters used for decentralized renewable energy resources[J]. Proceedings of the CSEE, 2013, 33(24): 1-12. [10] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1-14. Ding Ming, Wang Weisheng, Wang Xiuli, et al. A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1-14. [11] Beck H P, Hesse R. Virtual synchronous machine[C]. 9th International Conference on Electrical Power Quality and Utilisation. Barcelona, Spain: IEEE, 2007: 1-6. [12] Hirase Y, Abe K, Sugimoto K, et al. A grid connected inverter with virtual synchronous generator model of algebraic type[J]. IEEJ Transactions on Power and Energy, 2012, 132(4): 371-380. [13] Gao F, Iravani M R. A control strategy for a distri- buted generation unit in grid-connected and autonomous modes of operation[J]. IEEE Transactions on Power Delivery, 2008, 23(2): 850-859. [14] Zhong Q C, Weiss G. Synchronverters: Inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267. [15] 吕志鹏, 罗安, 蒋雯倩, 等. 多逆变器环境微网环流控制新方法[J]. 电工技术学报, 2012, 27(1): 40-47. Lü Zhipeng, Luo An, Jiang Wenqian, et al. New circulation control method for micro-grid with multi- inverter micro-sources[J]. Transactions of China Elec- trotechnical Society, 2012, 27(1): 40-47. [16] 杜威, 姜齐荣, 陈蛟瑞. 微电网电源的虚拟惯性频率控制策略[J]. 电力系统自动化, 2011, 35(23): 26-31. Du Wei, Jiang Qirong, Chen Jiaorui. Frequency control strategy of distributed generations based on virtual inertia in a microgrid[J]. Automation of Electric Power Systems, 2011, 35(23): 26-31. [17] 王思耕, 葛宝明, 毕大强. 基于虚拟同步发电机的风电场并网控制研究[J]. 电力系统保护与控制, 2011, 39(21): 49-54. Wang Sigeng, Ge Baoming, Bi Daqiang. Control strategies of grid-connected wind farm based on virtual synchronous generator[J]. Power System Protection and Control, 2011, 39(21): 49-54. [18] Sakimoto K, Miura Y, Ise T. Stabilization of a power system with a distributed generator by a virtual synchronous generator function[C]. IEEE 8th Interna- tional Conference on Power Electronics and ECCE Asia, The Shilla Jeju, Korea, 2011: 1498-1505. [19] Linn Z, Miura Y, Ise T. Power system stabilization control by HVDC with SMES using virtual synchronous generator[J]. IEEJ Journal of Industry Applications, 2012, 1(2): 102-110. [20] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [21] Anderson P M, Fouad A A. 电力系统控制与稳定[M]. 王奔, 译. 北京: 电子工业出版社, 2012. [22] 王成山. 微电网分析与仿真理论[M]. 北京: 科学出版社, 2013. [23] Vladimir Blasko, Vikram Kaura. A new mathematical model and control of a three-phase AC-DC voltage source converter[J]. IEEE Transaction on Power Electro- nics, 1997, 12(1): 116-123.